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Compositional Value Iteration with Pareto

Caching

Kazuki Watanabe, Marck van der Vegt, Sebastian Junges,

and Ichiro Hasuo
The de-facto standard approach in MDP verification is based on value iteration (VI). We propose composi-

tional VI, a framework for model checking compositional MDPs, that addresses efficiency while maintaining

soundness. Concretely, compositional MDPs naturally arise from the combination of individual compo-

nents, and their structure can be expressed using, e.g., string diagrams. Towards efficiency, we observe that

compositional VI repeatedly verifies individual components. We propose a technique called Pareto caching

that allows to reuse verification results, even for previously unseen queries. Towards soundness, we present

two stopping criteria: one generalizes the optimistic value iteration paradigm and the other uses Pareto

caches in conjunction with recent baseline algorithms. Our experimental evaluations shows the promise of

the novel algorithm and its variations, and identifies challenges for future work.

1 Introduction

1. 1 MDP Model Checking and Value It-

eration

Markov decision processes (MDPs) are the stan-

dard model for sequential decision making in

stochastic settings. A standard question in the veri-

fication of MDPs is: what is the maximal probability

that an error state is reached. MDPmodel checking

is an active topic in the formal verification commu-

nity.

Value iteration (VI) [17] is an iterative and ap-

proximate method whose performance in MDP

model checking is well-established [10] [3] [9]. Sev-

eral extensions with soundness have been proposed;

they provide, in addition to under-approximations,
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also over-approximations with a desired preci-

sion [19] [10] [7] [1] [16], so that an approximate an-

swer comes with an error bound. These sound algo-

rithms are implemented in mature model checkers

such as Prism [14], Modest [8], and Storm [12].

1. 2 Compositional Model Checking

Even with these state-of-the-art algorithms, it

is a challenge to model check large MDPs effi-

ciently with high precision. Experiments observe

that MDPs with more than 108 states are too large

for those algorithms [13] [22] [23]—they simply do

not fit in memory. However, such large MDPs often

arise as models of complicated stochastic systems,

e.g. in the domains of network and robotics. Fur-

thermore, even small models may be numerically

challenging to solve due to their structure [7] [9] [1].

Compositional model checking is a promising ap-

proach to tackle this scalability challenge. Given

a compositional structure of a target system, com-

positional model checking executes a divide-and-

conquer algorithm that avoids loading the entire

state space at once, often solving the above mem-



A
ir,1

ol,1

s1

s2 il,1

or,1
1 0.5

0.5
1

1
0.3

0.7

B
ir,1

ol,1

t1 or,10.3

1

0.7

図 1 open MDPs A and B.

ory problem. Moreover, reusing the model check-

ing results for components can lead to speed-up by

magnitudes. Although finding a suitable compo-

sitional structure for a given “monolithic” MDP

is still open, many systems come with such an

a priori compositional structure. For example,

such compositional structures are often assumed

in robotics and referred to as hierarchical mod-

els [11] [2] [13] [6] [20] [15] [21].

Recently, string diagrams of MDPs are intro-

duced for compositional model checking [22] [23];

the current paper adopts this formalism. There,

MDPs are extended with (open) entrances and ex-

its (Fig. 1), and they get composed by sequential

composition # and sum ⊕. See Fig. 2, where the

right-hand sides are simple juxtapositions of graphs

(wires get connected in #). This makes the formal-

ism focused on sequential (as opposed to parallel)

composition. This restriction eases the design of

compositional algorithms; yet, the formalism is rich

enough to capture the compositional structures of

many system models.

1. 3 Current Work: Compositional Value

Iteration

In this paper, we present a compositional value

iteration (CVI) algorithm that solves reachability

probabilities of string diagrams of MDPs, operat-

ing in a divide-and-conquer manner along compo-

sitional structures. Our approximate VI algorithm

comes with soundness—it produces error bounds—

and exploits compositionality for efficiency.

Specifically, for soundness, we lift the recent

paradigm of optimistic value iteration (OVI) [10]

to the current compositional setting. We use it

both for local (component-level) model checking

and—in one of the two global VI stopping crite-

ria that we present—for providing a global over-

approximation.

For efficiency, firstly, we adopt a top-down

compositional approach where each component is

model-checked repeatedly, each time on a different

weight w, in a by-need manner. Secondly, in or-

der to suppress repetitive computation on similar

weights, we introduce a novel technique of Pareto

caching that allows “approximate reuse” of model

checking results. This closely relates to multi-

objective probabilistic model checking [4] [5] [18],

without the explicit goal of building Pareto curves.

Our Pareto caching also leads to another (sound)

global VI stopping criterion that is based on the

approximate bottom-up approach [23].

Our algorithm is approximate (unlike the exact

one in [22]), and top-down (unlike the bottom-up

approximate one in [23]). Experimental evaluation

demonstrates its performance thanks to the combi-

nation of these two features. See [24] for details.
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