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Lexicographic Ranking Supermartingales with

Lazy Lower Bounds

Toru Takisaka, Libo Zhang, Changjiang Wang, Jiamou Liu

Lexicographic Ranking SuperMartingale (LexRSM) is a probabilistic extension of Lexicographic Ranking

Function (LexRF), which is a widely accepted technique for verifying program termination. In this paper,

we are the first to propose sound probabilistic extensions of LexRF with a weaker non-negativity condi-

tion, called single-component (SC) non-negativity. It is known that such an extension, if it exists, will be

nontrivial due to the intricacies of the probabilistic circumstances. Toward the goal, we first devise the

notion of fixability, which offers a systematic approach for analyzing the soundness of possibly negative

LexRSM. This notion yields a desired extension of LexRF that is sound for general stochastic processes.

We next propose another extension, called Lazy LexRSM, toward the application to automated verification;

it is sound over probabilistic programs with linear arithmetics, while its subclass is amenable to automated

synthesis via linear programming. We finally propose a LexRSM synthesis algorithm for this subclass, and

perform experiments.

1 Introduction

Background 1: Lexicographic RFs with

different non-negativity conditions. Ranking

function (RF) is one of the most well-studied tools

for verifying program termination. An RF is typ-

ically a real-valued function over program states

that satisfies: (a) the ranking condition, which re-

quires an RF to decrease its value by a constant

through each transition; and (b) the non-negativity

condition, which imposes a lower bound on the

value of the RF so that its infinite descent through
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transitions is prohibited. The existence of such

a function implies termination of the underlying

program, and therefore, one can automate verifi-

cation of program termination by RF synthesis al-

gorithms.

Improving the applicability of RF synthesis algo-

rithms, i.e., making them able to prove termination

of a wider variety of programs, is one of the core in-

terests in the study of RF. A lexicographic extension

of RF (LexRF) [8,10] is known as a simple but effec-

tive approach to the problem. Here, a LexRF is a

function to real-valued vectors instead of the reals,

and its ranking condition is imposed with respect to

the lexicographic order. For example, the value of a

LexRF may change from (1, 1, 1) to (1, 0, 2) through

a state transition; here, the value “lexicographically

decreases by 1” through the transition, that is, it

decreases by 1 in some dimension while it is non-

increasing on the left to that dimension. LexRF is

particularly good at handling nested structures of

programs, as vectors can measure the progress of



ℓ1 :

ℓ2 :

skip ;

x := 1 ;

. . .

//η = (a1, b1, c1)

//η = (a2, b2, c2)

Non-negativity condition η should be non-neg. at

Strong non-neg. a1, b1, c1, a2, b2, c2
Leftward non-neg. a1, b1, a2

Single-component non-neg. b1, a2

図 1 A demo of different non-negativity

conditions for LexRFs. There, the ranking

dimensions of the LexRF η are indicated by

underlines, and the last column of the table

shows where each condition requires η to be

non-negative.

different “phases” of programs separately. LexRF

is also used in top-performing termination provers

(e.g., [1]).

There are several known ways to impose non-

negativity on LexRFs (see also Fig. 1): (a) Strong

non-negativity, which requires non-negativity in ev-

ery dimension of the LexRF; (b) leftward non-

negativity, which requires non-negativity on the

left of the ranking dimension of each transition,

i.e., the dimension where the value of the LexRF

should strictly decrease through the transition; and

(c) single-component non-negativity, which requires

non-negativity only in the ranking dimensions. It

is known that any of these non-negativity condi-

tions makes the resulting LexRF sound [8,10], i.e.,

a program indeed terminates whenever it admits

a LexRF with either of these non-negativity con-

ditions. For better applicability, single-component

non-negativity is the most preferred, as it is the

weakest constraint among the three.

Background 2: Probabilistic programs and

lexicographic RSMs. One can naturally think

of a probabilistic counterpart of the above argu-

ment. One can consider probabilistic programs that

admit randomization in conditional branching and

variable updates. The notion of RF is then general-

ized to Ranking SuperMartingale (RSM), a function

similar to RFs except that the ranking condition re-

quires an RSM to decrease its value in expectation.

The existence of an RSM typically implies almost-

sure termination of the underlying program, i.e.,

termination of the program with probability 1.

Such a probabilistic extension has been actively

studied, in fact: probabilistic programs are used

in e.g., stochastic network protocols [33], random-

ized algorithms [18,26], security [6,7,27], and plan-

ning [11]; and there is a rich body of studies in RSM

as a tool for automated verification of probabilistic

programs (see §8). Similar to the RF case, a lexi-

cographic extension of RSM (LexRSM, [2,15]) is an

effective approach to improve its applicability. In

addition to its advantages over nested structures,

LexRSM can also witness almost-sure termination

of certain probabilistic programs with infinite ex-

pected runtime [2, Fig. 2]; certifying such programs

is known as a major challenge for RSMs.

Problem: Sound probabilistic extension of

LexRF with weaker non-negativity. strongly

non-negative LexRF soundly extends to LexRSM

in a canonical way [2], i.e., basically by changing

the clause “decrease by a constant” in the rank-

ing condition of LexRF to “decrease by a constant

in expectation”. In contrast, the similar exten-

sion of leftward or single-component non-negative

LexRF yields an unsound LexRSM notion [15, 20].

To date, a sound LexRSM with the weakest non-

negativity in the literature is Generalized LexRSM

(GLexRSM) [15], which demands leftward non-

negativity and an additional one, so-called expected

leftward non-negativity. Roughly speaking, the lat-

ter requires LexRSMs to be non-negative in each

dimension (in expectation) upon “exiting” the left

of the ranking dimension. For example, in Fig. 1,

it requires b2 to be non-negative, as the second di-

mension of η “exits” the left of the ranking dimen-

sion upon the transition ℓ1 → ℓ2. GLexRSM does



not generalize either leftward or single-component

non-negative LexRF, in the sense that the former

is strictly more restrictive than the latter two when

it is considered over non-probabilistic programs.

These results do not mean that leftward or single-

component non-negative LexRF can never be ex-

tended to LexRSM, however. More concretely, the

following problem is valid (see the last paragraph

of §3 for a formal argument):

KEY PROBLEM: Find a sound LexRSM no-

tion that instantiates†1single-component non-

negative LexRF, i.e., a LexRSM notion

whose condition is no stronger than that of

single-component non-negative LexRF in non-

probabilistic settings.

We are motivated to study this problem for a couple

of reasons. First, it is a paraphrase of the follow-

ing fundamental question: when do negative values

of (Lex)RSM cause trouble, say, to its soundness?

This question is a typical example in the study of

RSM where the question becomes challenging due

to its probabilistic nature. The question also ap-

pears in other topics in RSM; for example, it is

known that the classical variant rule of Floyd-Hoare

logic does not extend to almost-sure termination

of probabilistic programs in a canonical way [24],

due to the complicated treatment of negativity in

RSMs. To our knowledge, this question has only

been considered in an ad-hoc manner through coun-

terexamples (e.g., [15, 20, 24]), and we do not yet

have a systematic approach to answering it.

Second, relaxing the non-negativity condition of

LexRSM is highly desirable if we wish to fully un-

lock the benefit of the lexicographic extension in

automated verification. A motivating example is

given in Fig. 2. The probabilistic program in Fig. 2

terminates almost-surely, but it does not admit any

linear GLexRSM (and hence, the GLexRSM syn-

†1 We use the term “instantiate” to emphasize that

we compare LexRSM and LexRF.

thesis algorithms in [15] cannot witness its almost-

sure termination); for example, the function η

ranks every transition of the program, but violates

both leftward and expected leftward non-negativity

at the transition ℓ1 → ℓ2 (note η ranks this tran-

sition in the third dimension; to check the viola-

tion of expected leftward non-negativity, also note

η ranks ℓ2 → ℓ4 in the first dimension). Here, the

source of the problem is that the program has two

variables whose progress must be measured (i.e.,

increment y to 10 in ℓ3; and increment x to 5

in ℓ4), but one of their progress measures can be

arbitrarily small during the program execution (y

can be initialized with any value). Not only that

this structure is rather fundamental, it is also ex-

pected that our desired LexRSM could handle it, if

it exists. Indeed, modify the probabilistic program

in Fig. 2 into a non-probabilistic one by changing

“Unif [1, 2]” to “1”; then the program admits η as

a single-component non-negative LexRF.

Contributions. In this paper, we are the first to

introduce sound LexRSM notions that instantiate

single-component non-negative LexRF. Our contri-

butions are threefold, as we state below.

• First, in response to the first motivation we

stated above, we devise a novel notion of fixa-

bility as a theoretical tool to analyze if negative

values of a LexRSM “cause trouble”. Roughly

speaking, we identify the source of the trouble

as “ill” exploitation of unbounded negativity of

LexRSM; our ε-fixing operation prohibits such

exploitation by basically setting all the nega-

tive values of a LexRSM into the same negative

value −ε, and we say a LexRSM is ε-fixable if

it retains the ranking condition through such

a transformation. We give more details about

its concept and key ideas in §2.

The soundness of ε-fixable LexRSM imme-

diately follows from that of strongly non-



ℓ1 :

ℓ2 :

ℓ3 :

ℓ4 :

ℓ5 :

x := 0 ;

while x < 5 do

i f y < 10 then

y := y + Unif [1, 2]

else

x := x+ Unif [1, 2]

f i

od

η = (15− 2x, 12− y, 1)

η = (15− 2x, 12− y, 0)

η = (15− 2x, 11− y, 2)

η = (14− 2x, 0, 1)

η = ( 0, 0, 0)

[x < 7]

[x < 5]

[y < 10, x < 5]

[y ≥ 10, x < 5]

[x ≥ 5]

図 2 A probabilistic modification of speedDis1 [4], where Unif [a, b] is a uniform sampling from the

(continuous) interval [a, b]. Inequalities on the right represent invariants. While η is not a

GLexRSM, it is an LLexRSM we propose; thus it witnesses almost-sure termination of the

program.

negative one [2] because any LexRSM becomes

strongly non-negative through the ε-fixing op-

eration (after globally adding ε). Fixable

LexRSM instantiates single-component non-

negative LexRF for general stochastic pro-

cesses (Thm. 4.3), while also serving as a tech-

nical basis for proving the soundness of other

LexRSMs. Meanwhile, fixable LexRSM cannot

be directly applied to automated verification

algorithms due to the inherent non-linearity of

ε-fixing; this observation leads us to our second

contribution.

• Second, in response to the second motiva-

tion we stated above, we introduce Lazy

LexRSM (LLexRSM) as another LexRSM no-

tion that instantiates single-component non-

negative LexRF. LLexRSM does not in-

volve the ε-fixing operation in its defini-

tion; thanks to this property, we have a

subclass of LLexRSM that is amenable to

automated synthesis via linear programming

(see §6). The LLexRSM condition consists

of the single-component non-negative LexRSM

condition and stability at negativity we propose

(Def. 5.1), which roughly requires the follow-

ing: Once the value of a LexRSM gets neg-

ative in some dimension, it must stay nega-

tive until that dimension exits the left of the

ranking one. For example, η in Fig. 2 is an

LLexRSM; indeed, ℓ2 → ℓ4 and ℓ1 → ℓ5 are

the only transitions where η possibly changes

its value from negative to non-negative in some

dimension (namely, the second one), which is

although the right to the ranking dimension

(the first one).

We prove linear LLexRSM is sound for prob-

abilistic programs over linear arithmetics (see

Thm. 5.4 for the exact assumption). The proof

is highly nontrivial, which is realized by subtle

use of a refined variant of fixability; we explain

its core idea in §2. Furthermore, Thm. 5.4

shows that expected leftward non-negativity in

GLexRSM [15] is actually redundant under the

assumption in Thm. 5.4. This is surprising,

as expected leftward non-negativity has been

invented to restore the soundness of leftward

non-negative LexRSM, which is generally un-

sound.

• Third, we present a synthesis algorithm for the

subclass of LLexRSM we mentioned above, and

do experiments; there, our algorithms verified

almost-sure termination of various programs



that could not be handled by (a better proxy

of) the GLexRSM-based one. The details can

be found in §7.

2 Key Observations with Examples

Here we demonstrate by examples how intricate

the treatment of negative values of LexRSM is, and

how we handle it by our proposed notion of fixabil-

ity.

Blocking “ill” exploitation of unbounded

negativity. Fig. 3 is a counterexample that shows

leftward non-negative LexRSM is generally un-

sound (conceptually the same as [15, Ex. 1]). The

probabilistic program in Fig. 3 does not terminate

almost-surely because the chance of entering ℓ4

from ℓ3 quickly decreases as t increases. Meanwhile,

η = (η1, η2, η3) in Fig. 3 is a leftward non-negative

LexRSM over a global invariant [0 ≤ x ≤ 1]; in

particular, observe η2 decreases by 1 in expecta-

tion from ℓ3, whose successor location is either ℓ4

or ℓ1.

ℓ1 :

ℓ2 :

ℓ3 :

ℓ4 :

ℓ5 :

x := 0 ; t := 1 ;

while x = 0 do

t := t+ 1 ;

i f prob(2−t)

then x := 1

f i

od

η = (2− x, 0, 2)

η = ( 2, 0, 1)

η = ( 2, 0, 0)

η = ( 2,−2t, 0)

η = ( 0, 0, 0)

図 3 An example of “ill” exploitation.

This example reveals an inconsistency between

the ways how the single-component non-negativity

and ranking condition evaluate the value of a

LexRSM, say η = (η1, . . . , ηn). The single-

component non-negativity claims η cannot rank

a transition in a given dimension k whenever ηk

is negative; intuitively, this means that any neg-

ative value in the ranking domain R should be

understood as the same state, namely the “bot-

tom” of the domain. Meanwhile, the ranking condi-

tion evaluates different negative values differently;

a smaller negative value of ηk can contribute more

to satisfy the ranking condition, as one can see from

the behavior of η2 in Fig. 3 at ℓ3. The function η in

Fig. 3 satisfies the ranking condition over a possibly

non-terminating program through “ill” exploitation

of this inconsistency; as t becomes larger, the value

of η2 potentially drops more significantly through

the transition from ℓ3, but with a smaller probabil-

ity.

The first variant of our fixability notion, called

ε-fixability, enables us to ensure that such exploita-

tion is not happening. We simply set every nega-

tive value in a LexRSM η to a negative constant

−ε, and say η is ε-fixable if it retains the ranking

condition through the modification†2. For exam-

ple, the ε-fixing operation changes the value of η2

in Fig. 3 at ℓ4 from −2t to −ε, and η does not sat-

isfy the ranking condition after that. Therefore,

η in Fig. 3 is not ε-fixable for any ε > 0 (i.e.,

we successfully reject this η through the fixabil-

ity check). Meanwhile, an ε-fixable LexRSM wit-

nesses almost-sure termination of the underlying

program; indeed, the fixed LexRSM is a strongly

non-negative LexRSM (by globally adding ε to the

fixed η), which is known to be sound [2].

The notion of ε-fixability is operationally so sim-

ple that one might even feel it is a boring idea; nev-

ertheless, its contribution to revealing the nature of

possibly negative LexRSM is already significant in

our paper. Indeed, (a) ε-fixable LexRSM instan-

tiates single-component non-negative LexRF with

an appropriate ε (Thm. 4.3); (b) ε-fixable LexRSM

†2 To give the key ideas in a simpler way, the descrip-

tion here slightly differs from the actual definition

in §4; referred results in §2 are derived from the

latter. See Rem. 4.1.



generalizes GLexRSM [15], and the proof offers

an alternative proof of soundness of GLexRSM

that is significantly simpler than the original one

(Thm. 4.4); and (c) its refined variant takes the

crucial role in proving soundness of our second

LexRSM variant, lazy LexRSM.

Allowing “harmless” unbounded negativ-

ity. While ε-fixable LexRSM already instantiates

single-component non-negative LexRF, we go one

step further to obtain a LexRSM notion that is

amenable to automated synthesis, in particular via

Linear Programming (LP). The major obstacle to

this end is the case distinction introduced by ε-

fixability, which makes the fixed LexRSM nonlin-

ear. Lazy LexRSM (LLexRSM), our second pro-

posed LexRSM, resolves this problem while it also

instantiates single-component non-negative LexRF.

Linear LLexRSM is sound over probabilistic pro-

grams with linear arithmetics (Thm. 5.4). The key

to the proof is, informally, the following observa-

tion: Restrict our attention to probabilistic pro-

grams and functions η that are allowed in the LP-

based synthesis. Then “ill” exploitation in Fig. 3

never occurs, and therefore, a weaker condition

than ε-fixability (namely, the LLexRSM one) suf-

fices for witnessing program termination. In fact,

Fig. 3 involves (a) non-linear arithmetics in the pro-

gram, (b) parametrized if-branch in the program

(i.e., the grammar “ if prob(p) then P else Q fi

” with p being a variable), and (c) non-linearity

of η. None of them are allowed in the LP-based

synthesis (at least, in the standard LP-based syn-

thesis via Farkas’ Lemma [2,12,15]). Our informal

statement above is formalized as Thm. 5.3, which

roughly says: Under such a restriction to proba-

bilistic programs and η, any LLexRSM is (ε, γ)-

fixable. Here, (ε, γ)-fixability is a refined version of

ε-fixability; while it also ensures that “ill” exploita-

tion is not happening in η, it is less restrictive than

ε-fixability by allowing “harmless” unbounded neg-

ative values of η.

ℓ1 :

ℓ2 :

ℓ3 :

ℓ4 :

ℓ5 :

x := 0 ; t := 1 ;

while x = 0 do

i f prob(0.5)

then t := 4t

else x := 1

f i

od

η = (2− x, t+ 1)

η = ( 2, t)

η = ( 2, 4t+ 2)

η = ( 2,−2t− 4)

η = ( 0, 0)

図 4 An example of ”harmless” unbounded

negativity.

Fig. 4 gives an example of such a harmless be-

havior of η rejected by ε-fixability. It also shows

why we cannot simply use ε-fixability to check an

LLexRSM does not do “ill” exploitation. The func-

tion η = (η1, η2) in Fig. 4 is leftward non-negative

over the global invariant [0 ≤ x ≤ 1∧ t ≥ 1], so it is

an LLexRSM for the probabilistic program there;

the program and η are also in the scope of LP-based

synthesis; but η is not ε-fixable for any ε > 0. In-

deed, the ε-fixing operation changes the value of η2

at ℓ4 from −2t − 4 to −ε, and η does not satisfy

the ranking condition at ℓ2 after the change. Here

we notice that, however, the unbounded negative

values of η2 are “harmless”; that is, the “ill-gotten

gains” by the unbounded negative values of η2 at

ℓ4 are only “wasted” to unnecessarily increase η2

at ℓ3. In fact, η still satisfies the ranking condition

if we change the value of η2 at ℓ1, ℓ2, ℓ3 to 2, 1, and

0, respectively.

We resolve this issue by partially waiving the

ranking condition of η after the ε-fixing operation.

It is intuitively clear that the program in Fig. 4

almost-surely terminates, and the intuition here is

that the program essentially repeats an unbiased

coin tossing until the tail is observed (here, “ob-

serve the tail” corresponds to “observe prob(0.5) =



false at ℓ2”). This example tells us that, to wit-

ness the almost-sure termination of this program,

we only need to guarantee the program (almost-

surely) visits either the terminal location ℓ5 or the

“coin-tossing location” ℓ2 from anywhere else. The

ε-fixed η in Fig. 4 does witness such a property

of the program, as it ranks every transition except

those that are from a coin-tossing location, namely

ℓ2.

We generalize this idea as follows: Fix γ ∈ (0, 1),

and say a program state is a “coin-tossing state”

for η = (η1, . . . , ηn) in the k-th dimension if ηk

drops from non-negative to negative (i.e., the rank-

ing is “done” in the k-th dimension) with the prob-

ability γ or higher. Then we say η is (ε, γ)-fixable

(Def. 4.6) if the ε-fixed η is a strongly non-negative

LexRSM (after adding ε) except that, at each coin-

tossing state, we waive the ranking condition of η

in the corresponding dimension. For example, η

in Fig. 4 is (ε, γ)-fixable for any γ ∈ (0, 0.5]. As

expected, (ε, γ)-fixable LexRSM is sound for any

ε > 0 and γ ∈ (0, 1) (Cor. 4.7).

3 Preliminaries

We recall the technical preliminaries. Omitted

details are in [36].

Notations. We assume the readers are famil-

iar with the basic notions of measure theory, see

e.g. [5, 9]. The sets of non-negative integers and

reals are denoted by N and R, respectively. The

collection of all Borel sets of a topological space

X is denoted by B(X ). The set of all probability

distributions over the measurable space (Ω,B(Ω))
is denoted by D(Ω). The value of a vector x at

the i-th index is denoted by x[i] or xi. A subset

D ⊆ R of the reals is bounded if D ⊆ [−x, x] for

some x > 0.

For a finite variable set V and the set valV of its

valuations, we form predicates as first-order formu-

las with atomic predicates of the form f ≤ g, where

f, g : valV → R and R is linearly ordered. Often,

we are only interested in the value of a predicate

φ over a certain subset X ⊆ valV , in which case,

we call φ a predicate over X . We identify a predi-

cate φ over X with a function φ̃ : X → {0, 1} such

that φ̃(x) = 1 if and only if φ(x) is true. The se-

mantics of φ, i.e., the set {x ∈ X | φ(x) is true},
is denoted by JφK. The characteristic function

1A : X → {0, 1} of a subset A of X is a function

such that J1A = 1K = A. For a probability space

(Ω,F ,P), we say φ over Ω is (F-)measurable whenJφK ∈ F . For such a φ, the satisfaction probability

of φ w.r.t. P, i.e., the value P(JφK), is also denoted

by P(φ); we say φ holds P-almost surely (P-a.s.) if

P(φ) = 1.

3. 1 Syntax and Semantics of Probabilis-

tic Programs

Syntax. We define the syntax of Probabilistic

Programs (PPs) similarly to e.g., [2, 35]. More

concretely, PPs have the standard control struc-

ture in imperative languages such as if-branches

and while-loops, while the if-branching and vari-

able assignments can also be done in either non-

deterministic or probabilistic ways. Namely, ‘if ⋆’

describes a nondeterministic branching; ‘ndet(D)’

describes a nondeterministic assignment chosen

from a bounded†3 domain D ⊆ B(R); ‘if prob(p)’
with a constant p ∈ [0, 1] describes a probabilis-

tic branching that executes the ‘then’ branch with

probability p, or the ‘else’ branch with probabil-

ity 1− p; and ‘sample(d)’ describes a probabilistic

assignment sampled from a distribution d ∈ D(R).

We consider PPs without conditioning, which are

also called randomized programs [35]; PPs with con-

ditioning are considered in e.g. [32]. The exact

grammar is given in [36].

†3 This is also assumed in [15] to avoid a complica-

tion in possibly negative LexRSMs.



In this paper, we focus our attention on PPs with

linear arithmetics; we say a PP is linear if each

arithmetic expression in it is linear, i.e., of the form

b+
∑n

i=1 ai · vi for constants a1, . . . , an, b and pro-

gram variables v1, . . . , vn.

Semantics. We adopt probabilistic control flow

graph (pCFG) as the semantics of PPs, which is

standard in existing RSM works (e.g., [12, 15, 35]).

Informally, it is a labeled directed graph whose ver-

tices are program locations, and whose edges rep-

resent possible one-step executions in the program.

Edges are labeled with the necessary information

so that one can reconstruct the PP represented by

the pCFG; for example, an edge e can be labeled

with the assignment commands executed through

e (e.g., ‘x := x+ 1’), the probability p ∈ [0, 1] that

e will be chosen (through ‘if prob(p)’), the guard

condition, and so on. Below we give its formal defi-

nition for completeness; see [36] for how to translate

PPs into pCFGs.

Definition 3.1 (pCFG). A pCFG is a tuple

(L, V,∆,Up, G), where

1. L is a finite set of locations.

2. V = {x1, . . . , x|V |} is a finite set of program

variables.

3. ∆ is a finite set of (generalized) transitions†4,

i.e., tuples τ = (ℓ, δ) of a location ℓ ∈ L and a

distribution δ ∈ D(L) over successor locations.

4. Up is a function that receives a transition τ ∈
∆ and returns a tuple (i, u) of a target vari-

able index i ∈ {1, . . . , |V |} and an update el-

ement u. Here, u is either (a) a Borel mea-

surable function u : R|V | → R, (b) a distribu-

tion d ∈ D(R), or (c) a bounded measurable

set R ∈ B(R). In each case, we say τ is deter-

ministic, probabilistic, and non-deterministic,

respectively; the collections of these transitions

are denoted by ∆d, ∆p, and ∆n, respectively.

5. G is a guard function that assigns a G(τ) :

R|V | → {0, 1} to each τ ∈ ∆.

Below we fix a pCFG C = (L, V,∆,Up, G). A

state of C is a tuple s = (ℓ,x) of location ℓ ∈ L

and variable assignment vector x ∈ R|V |. We write

S to denote the state set L × R|V |. Slightly abus-

ing the notation, for τ = (ℓ, δ), we identify the setJG(τ)K ⊆ R|V | and the set {ℓ} × JG(τ)K ⊆ S; in

particular, we write s ∈ JG(τ)K when τ is enabled

at s, i.e., s = (ℓ,x), τ = (ℓ, δ) and x ∈ JG(τ)K.
A pCFG C with its state set S can be understood

as a transition system over S with probabilistic

transitions and nondeterminism (or, more specif-

ically, a Markov decision process with its states

S). Standard notions such as successors of a state

s ∈ S, finite paths, and (infinite) runs of C are de-

fined as the ones over such a transition system. The

set of all successors of s ∈ JG(τ)K via τ is denoted

by succτ (s). The set of runs of C is denoted by ΠC .

Schedulers resolve nondeterminism in pCFGs.

Observe there are two types of nondeterminism:

(a) nondeterministic choice of τ ∈ ∆ at a given

state (corresponds to ‘if ⋆’), and (b) nondetermin-

istic variable update in a nondeterministic transi-

tion τ ∈ ∆n (corresponds to ‘xi :=ndet(D)’). We

say a scheduler is ∆-deterministic if its choice is

non-probabilistic in Case (a).

We assume pCFGs are deadlock-free; we also as-

sume that there are designated locations ℓin and

ℓout that represent program initiation and termi-

nation, respectively. An initial state is a state of

the form (ℓin,x). We assume a transition from ℓout

is unique, denoted by τout; this transition does not

update anything.

By fixing a scheduler σ and an initial state sI ,

the infinite-horizon behavior of C is determined as

a distribution Pσ
sI over ΠC ; that is, for a measurable

†4 Defining these as edges might be more typical,

as in our informal explanation. We adopt the

style of [2, 15] for convenience; it can handle

‘if prob(p)’ by a single τ .



A ⊆ ΠC , the value Pσ
sI (A) is the probability that

a run of C from sI is in A under σ. We call the

probability space (ΠC ,B(ΠC),Pσ
sI ) the dynamics of

C under σ and sI . See [9] for the formal construc-

tion; a brief explanation is in [36].

We define the termination time of a pCFG C as

the function T C
term : ΠC → N ∪ {+∞} such that

T C
term(s0s1 . . .) = inf{t ∈ N | ∃x.st = (ℓout,x)}.

Now we formalize our objective, i.e., almost-sure

termination of pCFG, as follows.

Definition 3.2 (AST of pCFG). A run ω ∈ ΠC

terminates if T C
term(ω) < ∞. A pCFG C is a.s. ter-

minating (AST) under a scheduler σ and an initial

state sI if a run of C terminates Pσ
sI -a.s. We say C

is AST if it is AST for any σ and sI .

3. 2 Lexicographic Ranking Supermartin-

gales

Here we recall mathematical preliminaries of the

LexRSM theory. A (Lex)RSM typically comes in

two different forms: one is a vector-valued function

η : S → Rn over states S of a pCFG C, and another

is a stochastic process over the runs ΠC of C. We

recall relevant notions in these formulations, which

are frequently used in existing RSM works [12,15].

We also recall the formal definition of LexRSMs

with three different non-negativity conditions in

Fig. 1.

LexRSM as a quantitative predicate. Fix

a pCFG C. An (n-dimensional) measurable map

(MM) is a Borel measurable function η : S → Rn.

For a given 1-dimensional MM η and a transition

τ , The (maximal) pre-expectation of η under τ is a

function that formalizes “the value of η after the

transition τ”. More concretely, it is a function

Xτη : JG(τ)K → R that returns, for a given state s,

the maximal expected value of η at the successor

state of s via τ . Here, the maximality refers to the

set of all possible nondeterministic choices at s.

A level map Lv : ∆ → {0, . . . , n} designates

the ranking dimension of the associated LexRSM

η : S → Rn. We require Lv(τ) = 0 if and

only if τ = τout. We say an MM η ranks a

transition τ in the dimension k (under Lv) when

k = Lv(τ). An invariant is a measurable predi-

cate I : S → {0, 1} such that JIK is closed under

transitions and ℓin × R|V | ⊆ JIK. The set JIK over-

approximates the reachable states in C.
Suppose an n-dimensional MM η and an associ-

ated level map Lv are given. We say η satisfies the

ranking condition (under Lv and I) if the follow-

ing holds for each τ ̸= τout, s ∈ JI ∧ G(τ)K, and

k ∈ {1, . . . , Lv(τ)}:

Xτη[k](s) ≤

η[k](s) if k < Lv(τ),

η[k](s)− 1 if k = Lv(τ).

We also define the three different non-negativity

conditions in Fig. 1, i.e., STrong (ST), LeftWard

(LW), and Single-Component (SC) non-negativity,

as follows:

(ST non-neg.) ∀s ∈ JIK.∀k ∈ {1, . . . , n}.
η[k](s) ≥ 0,

(LW non-neg.) ∀τ ̸= τout.∀s ∈ JI ∧G(τ)K.
∀k ∈ {1, . . . , Lv(τ)}.
η[k](s) ≥ 0,

(SC non-neg.) ∀τ ≠ τout.∀s ∈ JI ∧G(τ)K.
η[Lv(τ)](s) ≥ 0.

All the materials above are wrapped up in the fol-

lowing definition.

Definition 3.3 ((ST/LW/SC)-LexRSMmap). Fix

a pCFG C with an invariant I. Let η be an MM as-

sociated with a level map Lv. The MM η is called a

STrongly non-negative LexRSM map (ST-LexRSM

map) over C supported by I if it satisfies the rank-

ing condition and the strong non-negativity under

Lv and I. If it satisfies the leftward or single-

component non-negativity instead of the strong one,

then we call it LW-LexRSM map or SC-LexRSM

map, respectively.

LexRSM as a stochastic process. When it



comes to automated synthesis, a (Lex)RSM is usu-

ally a function η over program states, as defined

in Def. 3.3. Meanwhile, when we prove the proper-

ties of (Lex)RSMs themselves (e.g., soundness), it

is often necessary to inspect the behavior of η upon

the program execution under given scheduler σ and

initial state sI . Such a behavior of η is formalized

as a sequence (Xt)
∞
t=0 of random variables over the

dynamics of the underlying pCFG, which forms a

stochastic process.

A (discrete-time) stochastic process in a proba-

bility space (Ω,F ,P) is a sequence (Xt)
∞
t=0 of F-

measurable random variables Xt : Ω → Rn for

t ∈ N. In our context, it is typically associated

with another random variable T : Ω → N ∪ {+∞}
that describes the termination time of ω ∈ Ω. We

say T is AST (w.r.t. P) if P(T < ∞) = 1; observe

that, if (Ω,F ,P) is the dynamics of a pCFG C under

σ and sI , then C is AST under σ and sI if and only

if T C
term is AST w.r.t. P. As standard technical re-

quirements, we assume there is a filtration (Ft)
∞
t=0

in (Ω,F ,P) such that (Xt)
∞
t=0 is adapted to (Ft)

∞
t=0,

T is a stopping time w.r.t. (Ft)
∞
t=0, and (Xt)

∞
t=0 is

stopped at T ; see [36] for their definitions.

For a stopping time T w.r.t. (Ft)
∞
t=0, we de-

fine a level map (Lvt)
∞
t=0 as a sequence of Ft-

measurable functions Lvt : Ω → {0, . . . n} such thatJLvt = 0K = JT ≤ tK for each t. We call a pair of a

stochastic process and a level map an instance for

T ; just like we construct an MM η and a level map

Lv as an AST certificate of a pCFG C, we construct
an instance for a stopping time T as its AST cer-

tificate. We say an instance ((Xt)
∞
t=0, (Lvt)

∞
t=0) for

T ranks ω ∈ Ω in the dimension k at time t when

T (ω) > t and k = Lvt(ω).

For c > 0, we say an instance ((Xt)
∞
t=0, (Lvt)

∞
t=0)

satisfies the c-ranking condition if, for each t ∈ N,

ω ∈ JLvt ̸= 0K, and k ∈ {1, . . . , Lvt(ω)}, we have:

E[Xt+1[k] | Ft](ω) ≤ Xt[k](ω)

− c · 1Jk=LvtK(ω) (P-a.s.) (1)

Here, the function E[Xt+1[k] | Ft] denotes the

conditional expectation of Xt+1[k] given Ft, which

takes the role of pre-expectation. We mostly let

c = 1 and simply call it the ranking condition; the

only result sensitive to c is Thm. 4.3.

We also define the three different non-negativity

conditions for an instance as follows. Here we adopt

a slightly general (but essentially the same) vari-

ant of strong non-negativity instead, calling it uni-

form well-foundedness ; we simply allow the uniform

lower bound to be any constant ⊥ ∈ R instead of

fixing it to be zero. This makes the later argument

simpler.

(UN well-fnd.) ∃⊥ ∈ R.∀t ∈ N.

∀ω ∈ Ω.∀k ∈ {1, . . . , n}. Xt[k](ω) ≥ ⊥,

(LW non-neg.) ∀t ∈ N.∀ω ∈ JLvt ̸= 0K.
∀k ∈ {1, . . . , Lvt(ω)}. Xt[k](ω) ≥ 0,

(SC non-neg.)

∀t ∈ N.∀ω ∈ JLvt ̸= 0K. Xt[Lvt(ω)](ω) ≥ 0.

Definition 3.4 ((UN/LW/SC)-LexRSM). Sup-

pose the following are given: a probability space

(Ω,F ,P); a filtration (Ft)
∞
t=0 on F ; and a stop-

ping time T w.r.t. (Ft)
∞
t=0. An instance I =

((Xt)
∞
t=0, (Lvt)

∞
t=0) is called a UNiformly well-

founded LexRSM (UN-LexRSM) for T with the bot-

tom ⊥ ∈ R and a constant c ∈ R if (a) (Xt)
∞
t=0

is adapted to (Ft)
∞
t=0; (b) for each t ∈ N and

1 ≤ k ≤ n, the expectation of Xt[k] exists; (c) I
satisfies the c-ranking condition; and (d) I is uni-

formly well-founded with the bottom ⊥. We de-

fine LW-LexRSM and SC-LexRSM by changing (d)

with LW and SC non-negativity, respectively.

We mostly assume c = 1 and omit to mention the

constant. UN-LexRSM is known to be sound [2];

meanwhile, LW and SC-LexRSM are generally un-

sound [15, 20]. We still mention the latter two as

parts of sound LexRSMs.



From RSM maps to RSMs. Let η be an MM

over a pCFG C with a level map Lv. Together with

a ∆-deterministic scheduler σ and initial state sI ,

it induces an instance ((Xt)
∞
t=0, (Lvt)

∞
t=0) over the

dynamics of C, by letting Xt(s0s1 . . .) = η(st); it

describes the behavior of η and Lv through exe-

cuting C from sI under σ. Properties of η such as

ranking condition or non-negativity are inherited

to the induced instance (if the expectation of Xt[k]

exists for each t, k). For example, an instance in-

duced by an ST-LexRSM map is an UN-LexRSM

with ⊥ = 0.

Non-probabilistic settings, and instantiation

of SC-LexRF. The key question in this paper is

to find a LexRSM notion that instantiates SC non-

negative LexRF (or SC-LexRF for short); that is,

we would like to find a LexRSM notion whose con-

ditions are satisfied by

SC-LexRSM†5 in the non-probabilistic setting,

which we formalize as follows. We say a pCFG is

a (non-probabilistic) CFG if (a) δ is Dirac for each

(ℓ, δ) ∈ ∆, and (b) ∆p = ∅; this roughly means that

a CFG is a model of a PP without ‘if prob(p)’ and

‘sample(d)’. We say a probability space (Ω,F ,P)

is trivial if Ω is a singleton, say {ω}.

4 Fixable LexRSMs

In §4-6 we give our novel technical notions and

results. In this section, we will introduce the no-

tion of fixability and related results. Here we focus

on technical rigorousness and conciseness, see §2

for the underlying intuition. Proofs are given in

appendices of [36].

We begin with the formal definition of ε-

†5 One would perhaps expect to see “SC-LexRF”

here; such a change does not make a difference

under a canonical definition of SC-LexRF, so we

define the notion of instantiation in this way to

save space. See also [36, Appendix A].

fixability.

Remark 4.1. As in Footnote 2, our formal defini-

tions of fixability in this section slightly differ from

an informal explanation in §2. One difference is

that the ε-fixing in Def. 4.2 changes the value of a

LexRSM at dimension k whenever it is negative or

k is strictly on the right to the ranking dimension.

This modification is necessary to prove Thm. 4.4.

Another is that we define fixability as the notion

for an instance I, rather than for an MM η. While

the latter can be also done in an obvious way (as

informally done in §2), we do not formally do that

because it is not necessary for our technical devel-

opment. One can “fix” the argument in §2 into the

one over instances by translating “fixability of η”

to “fixability of an instance induced by η”.

Definition 4.2 (ε-fixing of an instance). Let I =

((Xt)
∞
t=0), (Lvt)

∞
t=0) be an instance for a stopping

time T , and let ε > 0. The ε-fixing of I is another

instance Ĩ = ((X̃t)
∞
t=0, (Lvt)

∞
t=0) for T , where

X̃t[k](ω) =

−ε if Xt[k](ω) < 0 or k > Lvt(ω),

Xt[k](ω) otherwise.

We say an SC-LexRSM I is ε-fixable, or call it

an ε-fixable LexRSM, if its ε-fixing Ĩ is an UN-

LexRSM with the bottom ⊥ = −ε.

Observe that the ε-fixing of any instance is uni-

formly well-founded with the bottom ⊥ = −ε, so

the ε-fixability only asks if the ranking condition is

preserved through ε-fixing. Also, observe that the

soundness of ε-fixable LexRSM immediately follows

from that of UN-LexRSM [2].

While we do not directly use ε-fixability as a tech-

nical tool, the two theorems below show its concep-

tual value. The first one answers our key problem:

ε-fixable LexRSM instantiates SC-LexRF with suf-

ficiently large ε.

Theorem 4.3 (fixable LexRSM instantiates

SC-LexRF). Suppose I = ((xt)
∞
t=0, (Lvt)

∞
t=0) is an

SC-LexRSM for a stopping time T over the trivial

probability space with a constant c, and let ε ≥ c.



Then I is ε-fixable.

The second theorem offers a formal compari-

son between ε-fixable LexRSM and the state-of-

the-art LexRSM variant in the literature, namely

GLexRSM [15]. We show the former subsumes

the latter. In our terminology, GLexRSM is LW-

LexRSM that also satisfies the following expected

leftward non-negativity :

∀t ∈ N.∀ω ∈ JLvt ̸= 0K.∀k ∈ {1, . . . , Lvt(ω)}.
E[1Jk>Lvt+1K ·Xt+1[k] | Ft](ω) ≥ 0.

We note that our result can be also seen as an al-

ternative proof of the soundness of GLexRSM [15,

Thm. 1]. Our proof is also significantly simpler

than the original one, as the former utilizes the

soundness of UN-LexRSM as a lemma, while the

latter does the proof “from scratch”.

Theorem 4.4 (fixable LexRSM generalizes

GLexRSM). Suppose I is a GLexRSM for a stop-

ping time T . Then I is ε-fixable for any ε > 0.

Now we move on to a refined variant, (ε, γ)-

fixability. Before its formal definition, we give a

theorem that justifies the partial waiving of the

ranking condition described in §2. Below,
∞
∃ t.φt

stands for ∀k ∈ N.∃t ∈ N.[t > k ∧ φt].

Theorem 4.5 (relaxation of the UN-LexRSM con-

dition). Suppose the following are given: a prob-

ability space (Ω,F ,P); a filtration (Ft)
∞
t=0 on F ;

and a stopping time T w.r.t. (Ft)
∞
t=0. Let I =

((Xt)
∞
t=0, (Lvt)

∞
t=0) be an instance for T , and let

⊥ ∈ R. For each k ∈ {1, . . . , n}, let (φt,k)
∞
t=0 be a

sequence of predicates over Ω such that
∞
∃ t.φt,k(ω) ⇒
∞
∃ t.[Xt[k](ω) = ⊥ ∨ k > Lvt(ω)] (P-a.s.) (2)

Suppose I is an UN-LexRSM with the bottom ⊥ ex-

cept that, instead of the ranking condition, I satis-

fies the inequality (1) only for t ∈ N, k ∈ {1, . . . , n},
and ω ∈ Jk ≤ Lvt ∧ ¬(Xt[k] > ⊥ ∧ φt,k)K (with

c = 1). Then T is AST w.r.t. P.

The correspondence between the argument in §2

and Thm. 4.5 is as follows. The predicate φt,k is

an abstraction of the situation “we are at a coin-

tossing state at time t in the k-th dimension”; and

the condition (2) corresponds to the infinite coin-

tossing argument (for a given k, if φt,k is satisfied

at infinitely many t, then the ranking in the k-th

dimension is “done” infinitely often, with probabil-

ity 1). Given these, Thm. 4.5 says that the rank-

ing condition of UN-LexRSM can be waived overJXt[k] > ⊥ ∧ φt,kK. In particular, the theorem

amounts to the soundness of UN-LexRSM when

φt,k ≡ false for each t and k.

Based on Theorem 4.5, we introduce (ε, γ)-

fixability as follows. There, P[φ | F ′] := E[1JφK |
F ′] is the conditional probability of satisfying φ

given F ′.

Definition 4.6 ((ε, γ)-fixability). Let I =

((Xt)
∞
t=0, (Lvt)

∞
t=0) be an instance for T , and let

γ ∈ (0, 1). We call I a γ-relaxed UN-LexRSM for

T if I satisfies the properties in Thm. 4.5, where

φt,k is as follows:

φt,k(ω) ≡ P[Xt+1[k] = ⊥ | Ft](ω) ≥ γ. (3)

We say I is (ε, γ)-fixable if its ε-fixing Ĩ is a γ-

relaxed UN-LexRSM.

The predicate φt,k(ω) in (3) is roughly read “the

ranking by (Xt)
∞
t=0 is done at time t+ 1 in dimen-

sion k with probability γ or higher, given the infor-

mation about ω at t”. This predicate satisfies Con-

dition (2); hence we have the following corollary,

which is the key to the soundness of lazy LexRSM

in §5.

Corollary 4.7 (soundness of (ε, γ)-fixable in-

stances). Suppose there exists an instance I over

(Ω,F ,P) for a stopping time T that is (ε, γ)-fixable

for any ε > 0 and γ ∈ (0, 1). Then T is AST w.r.t.

P.
5 Lazy LexRSM and Its Soundness

Here we introduce another LexRSM variant, Lazy

LexRSM (LLexRSM). We need this variant for

our LexRSM synthesis algorithm; while ε-fixable

LexRSM theoretically answers our key question, it



is not amenable to LP-based synthesis algorithms

because its case distinction makes the resulting con-

straint nonlinear.

We define LLexRSM map as follows; see Con-

tributions in §1 for its intuitive meaning with an

example. The definition for an instance is in [36,

Appendix C].

Definition 5.1 (LLexRSM map). Fix a pCFG C
with an invariant I. Let η be an MM associated

with a level map Lv. The MM η is called a Lazy

LexRSM map (LLexRSM map) over C supported

by I if it is an SC-LexRSM map over C supported

by I, and satisfies stability at negativity defined as

follows:

∀τ ̸= τout.∀s ∈ JI ∧G(τ)K.∀k ∈ {1, . . . , Lv(τ)− 1}.
η[k](s) < 0 ⇒ ∀s′ ∈ succτ (s).[

η[k](s′) < 0 ∨ k > max
τ ′:s′∈JG(τ ′)K Lv(τ ′)

]
.

We first observe LLexRSM also answers our key

question.

Theorem 5.2 (LLexRSM instantiates SC-LexRF).

Suppose η is an SC-LexRSM over a non-

probabilistic CFG C supported by an invariant I,

with a level map Lv. Then η is stable at negativity

under I and Lv, and hence, η is an LLexRSM map

over C supported by I, with Lv.

Below we give the soundness result of LLexRSM

map. We first give the necessary assumptions

on pCFGs and MMs, namely linearity and well-

behavedness. we say a pCFG is linear if the update

element of each τ ∈ ∆d is a linear function (this

corresponds to the restriction on PPs to the linear

ones); and an MM η is linear if λx.η(ℓ,x) is lin-

ear for each ℓ ∈ L. We say a pCFG is well-behaved

if its variable samplings are done via well-behaved

distributions, which roughly means that their tail

probabilities vanish to zero toward infinity quickly

enough. Its formal definition is given in [36, Def.

C.4], which is somewhat complex; an important

fact from the application perspective is that the

class of such distributions covers all distributions

with bounded supports and some distributions with

unbounded supports such as the normal distribu-

tions [36, Prop. C.6].

Possibly negative (Lex)RSM typically requires

some restriction on variable samplings of pCFG

(e.g., the integrability in [15]) so that the pre-

expectation is well-defined.

The crucial part of the soundness proof is the

following theorem, where (ε, γ)-fixability takes the

key role. Its full proof is given in [36, Appendix C].

Theorem 5.3. Let η : S → Rn be a linear

LLexRSM map for a linear, well-behaved pCFG C.
Then for any ∆-deterministic scheduler σ and ini-

tial state sI of C, the induced instance is (ε, γ)-

fixable for some ε > 0 and γ ∈ (0, 1).

Proof (sketch). We can show that the ε-fixing

Ĩ = ((X̃t)
∞
t=0, (Lvt)

∞
t=0) of an induced instance

I = ((Xt)
∞
t=0, (Lvt)

∞
t=0) almost-surely satisfies the

inequality (1) of the ranking condition for each t,

ω, and k such that X̃t[k](ω) = −ε and 1 ≤ k ≤
Lvt(ω) [36, Prop. C.2]. Thus it suffices to show,

for each ω, k, and t such that X̃t[k](ω) ≥ 0 and

1 ≤ k ≤ Lvt(ω), either Ĩ satisfies the inequality (1)

or (1) as a requirement on Ĩ is waived due to the

γ-relaxation.

Now take any such t, ω, and k, and suppose

the run ω reads the program line prog at time

t. Then we can show the desired property by a

case distinction over prog as follows. Here, re-

call ω is a sequence s0s1 . . . stst+1 . . . of program

states; we defined Xt by Xt[k](ω) = η[k](st); and

E[Xt+1[k] | Ft](ω) is the expectation of η[k](s′),

where s′ is the successor state of s0 . . . st under σ

(which is not necessarily st+1). Also observe the

requirement (1) on Ĩ is waived for given t, ω, and

k when the value of η[k](s′) is negative with the

probability γ or higher.

1. Suppose prog is a non-probabilistic program

line, e.g., ‘xi := f(x)’ or ‘while φ do’. Then



the successor state s′ of st is unique. If η[k](s
′)

is non-negative, then we have E[X̃t+1[k] |
Ft](ω) = E[Xt+1[k] | Ft](ω), so the inequal-

ity (1) is inherited from I to Ĩ; if negative,

then the requirement (1) on Ĩ is waived. The

same argument applies to ‘if ⋆ then’ (recall I
is induced from a ∆-deterministic scheduler).

2. Suppose prog ≡ ‘if prob(p) then’. By letting

γ strictly smaller than p, we see either η[k](s′)

is never negative, or it is negative with a prob-

ability more than γ. Thus we have the desired

property for a similar reason to Case 1 (we note

this argument requires p to be a constant).

3. Suppose prog ≡ ‘xi := sample(d)’. We can

show the desired property by taking a suffi-

ciently small γ; roughly speaking, the require-

ment (1) on Ĩ is waived unless the chance of

η[k](s′) being negative is very small, in which

case the room for “ill” exploitation is so small

that the inequality (1) is inherited from I
to Ĩ. Almost the same argument applies to

‘xi := ndet(D)’.

We note, by the finiteness of program locations

L and transitions ∆, we can take γ ∈ (0, 1) that

satisfies all requirements above simultaneously.

Now we have soundness of LLexRSM as the fol-

lowing theorem, which is almost an immediate con-

sequence of Thm. 5.3 and Cor. 4.7.

Theorem 5.4 (soundness of linear LLexRSM map

over linear, well-behaved pCFG). Let C be a linear,

well-behaved pCFG, and suppose there is a linear

LLexRSM map over C (supported by any invariant).

Then C is AST.

6 Automated Synthesis Algorithm of

LexRSM

In this section, we introduce a synthesis algo-

rithm of LLexRSM for automated AST verification

of linear PPs. It synthesizes a linear MM in a cer-

tain subclass of LLexRSMs. We first define the

subclass, and then introduce our algorithm.

Our algorithm is a variant of linear template-

based synthesis. There, we fix a linear MM η with

unknown coefficients (i.e., the linear template), and

consider an assertion “η is a certificate of AST”; for

example, in the standard 1-dimensional RSM syn-

thesis, the assertion is “η is an RSM map”. We

then reduce this assertion into a set of linear con-

straints via Farkas’ Lemma [34]. These constraints

constitute an LP problem with an appropriate ob-

jective function. A certificate is synthesized, if fea-

sible, by solving this LP problem. The reduction is

standard, so we omit the details; see e.g. [35].

Subclass of LLexRSM for automated syn-

thesis. While LLexRSM resolves the major is-

sue that fixable LexRSM confronts toward its auto-

mated synthesis, we still need to tweak the notion

a bit more, as the stability at negativity condition

involves the value of an MM η in its antecedent

part (i.e., it says “whenever η[k] is negative for

some k...”); this makes the reduced constraints via

Farkas’ Lemma nonlinear. Therefore, we augment

the condition as follows.

Definition 6.1 (MCLC). Let η : S → Rn be an

MM supported by an invariant I, with a level map

Lv. We say η satisfies the multiple-choice leftward

condition (MCLC) if, for each k ∈ {1, . . . , n}, it

satisfies either (4) or (5) below:

∀τ ∈ Jk < LvK.∀s ∈ JI ∧G(τ)K.
η[k](s) ≥ 0, (4)

∀τ ∈ Jk < LvK.∀s ∈ JI ∧G(τ)K.∀s′ ∈ succτ (s).

η[k](s′) ≤ η[k](s). (5)

Condition (4) is nothing but the non-negativity

condition in dimension k. Condition (5) augments

the ranking condition in the strict leftward of the

ranking dimension (a.k.a. the unaffecting condi-

tion) so that the value of η[k] is non-increasing in

the worst-case. MCLC implies stability at negativ-

ity; hence, by Thm. 5.4, linear SC-LexRSM maps



with MCLC certify AST of linear, well-behaved

pCFGs. They also instantiate SC-LexRFs as fol-

lows.

Theorem 6.2 (SC-LexRSM maps with MCLC

instantiate SC-LexRFs). Suppose η is an SC-

LexRSM map over a non-probabilistic CFG C sup-

ported by I, with Lv. Then η satisfies MCLC under

I and Lv.

The algorithm. Our LexRSM synthesis algo-

rithm mostly resembles the existing ones [2,15], so

we are brief here; a line-to-line explanation with a

pseudocode is in [36, Appendix D].

The algorithm receives a pCFG C and an invari-

ant I, and attempts to construct a SC-LexRSM

with MCLC over C supported by I. The construc-

tion is iterative; at the k-th iteration, the algorithm

attempts to construct a one-dimensional MM ηk

that ranks transitions of C that are not ranked by

the current construction η = (η1, . . . , ηk−1), while

respecting MCLC. If the algorithm finds ηk that

ranks at least one new transition, then it appends

ηk to η and goes to the next iteration; otherwise,

it reports a failure. Once η ranks all transitions,

the algorithm reports a success, returning η as an

AST certificate of C.
Our algorithm attempts to construct ηk in two

ways, by adopting either (4) or (5) as the leftward

condition at the dimension k. The attempt with

the condition (4) is done in the same manner as ex-

isting algorithms [2, 15]; we require ηk to rank the

unranked transitions as many as possible. The at-

tempt with the condition (5) is slightly nontrivial;

the algorithm demands a user-defined parameter

Class(U) ⊆ 2U for each U ⊆ ∆ \ {τout}. The pa-

rameter Class(U) specifies which set of transitions

the algorithm should try to rank, given the set of

current unranked transitions U ; that is, for each

T ∈ Class(U), the algorithm attempts to find ηk

that exactly ranks transitions in T .

There are two canonical choices of Class(U). One

is 2U \ {∅}, the brute-force trial; the resulting algo-

rithm does not terminate in polynomial time, but

ranks the maximal number of transitions (by trying

each T in the descending order w.r.t. |T |). This

property makes the algorithm complete. Another

choice is the singletons of U , i.e., {{τ} | τ ∈ U};
while the resulting algorithm terminates in polyno-

mial time, it lacks the maximality property. It is

our future work to verify if there is a polynomial

complete instance of our proposed algorithm. Still,

any instance of it is complete over yet another class

of LLexRSMs, namely linear LW-LexRSMs. For a

formal statement and its proof, see [36, Thm. D.1].

7 Experiments

We performed experiments to evaluate the per-

formance of our proposed algorithm. The imple-

mentation is publicly available†6.

Our evaluation criteria are twofold: one is

how the relaxed non-negativity condition of

our LexRSM—SC non-negativity and MCLC—

improves the applicability of the algorithm, com-

pared to other existing non-negativity conditions.

To this end, we consider two baseline algorithms.

(a) The algorithm STR: This is the one proposed

in [2], which synthesizes an ST-LexRSM. We

use the implementation provided by the au-

thors [3].

(b) The algorithm LWN : This synthesizes an LW-

LexRSM. LWN is realized as an instance of

our algorithm with Class(U) = ∅. We use

LWN as a proxy of the synthesis algorithm of

GLexRSM [16, Alg. 2], whose implementation

does not seem to exist. We note [16, Alg. 2]

synthesizes an LW-LexRSM with some addi-

tional conditions; therefore, it is no less restric-

tive than LWN.

Another criterion is how the choice of Class(U) af-

†6 https://doi.org/10.5281/zenodo.10937558



fects the performance of our algorithm. To this

end, we consider two instances of it: (a) Single-

ton Multiple Choice (SMC), given by Class(U) =

{{τ} | τ ∈ U}; and (b) Exhaustive Multiple Choice

(EMC), given by Class(U) = 2U \ ∅. SMC runs in

PTIME, but we do not know if it is complete; EMC

does not run in PTIME, but is complete.

We use benchmarks from [2], which consist of

non-probabilistic programs collected in [4] and

their probabilistic modifications. The modifica-

tion is done in two different ways: (a) while loops

“while φ do P od” are replaced with probabilis-

tic ones “while φ do (if prob(0.5) then P else

skip fi) od”; (b) in addition to (a), variable

assignments “x := f(x) + a” are replaced with

“x := f(x) + Unif [a − 1, a + 1]”. We include

non-probabilistic programs in our benchmark set

because the “problematic program structure” that

hinders automated LexRSM synthesis already ex-

ists in non-probabilistic programs (cf. our explana-

tion to Fig. 2). We also tried two PPs from [15, Fig.

1], which we call counterexStr1 and counterexStr2.

We implemented our algorithm upon [2], which

is available at [3]. Similar to [2], our implementa-

tion works as follows: (1) it receives a linear PP as

an input, and translates it into a pCFG C; (2) it

generates an invariant for C; (3) via our algorithm,

it synthesizes an SC-LexRSM map with MCLC. In-

variants are generated by ASPIC [19], and all LP

problems are solved by CPLEX [25].

Results. In 135 benchmarks from 55 models, STR

succeeds in 98 cases, LWN succeeds in 105 cases

while SMC and EMC succeed in 119 cases (we did

not run STR for counterexStr1 because it involves a

sampling from an unbounded support distribution,

which is not supported by STR). Table 1 summa-

rizes the cases where we observe differences in the

feasibility of algorithms. As theoretically antici-

pated, LWN always succeeds in finding a LexRSM

whenever STR does; the same relation is observed

between SMC vs. LWN and EMC vs. SMC. In

most cases, STR, LWN, and SMC return an out-

put within a second†7, while EMC suffers from an

exponential blowup when it attempts to rank tran-

sitions with Condition (5) in Def. 6.1. The full

results are in [36, Appendix E].

On the first evaluation criterion, the advantage of

the relaxed non-negativity is evident: SMC/EMC

have unique successes vs. STR on 21 programs

(21/135 = 15.6% higher success rate) from 16 differ-

ent models; SMC/EMC also have unique successes

vs. LWN in 14 programs (14/135 = 10.4% higher

success rate) from 12 models. This result shows

that the program structure we observed in Fig. 2

appears in various programs in the real world.

On the second criterion, EMC does not have any

unique success compared to SMC. This result sug-

gests that SMC can be the first choice as a concrete

instance of our proposed algorithm. Indeed, we sus-

pect that SMC is actually complete—verifying its

(in)completeness is a future work. For some pro-

grams, EMC found a LexRSM with a smaller di-

mension than SMC.

Interestingly, LWN fails to find a LexRSM for

counterexStr2, despite it being given in [15] as a

PP for which a GLexRSM (and hence, an LW non-

negative LexRSM) exists. This happens because

the implementation in [3] translates the PP into a

pCFG with a different shape than the one in [15]

(for the latter, a GLexRSM indeed exists); the for-

mer possesses a similar structure as in Fig. 2 be-

cause different locations are assigned for the while

loop and if branch. This demonstrates the ad-

vantage of our algorithm from another point of

view, i.e., robustness against different translations

of PPs.

†7 There was a single example for which more time

was spent, due to a larger size.



Benchmark spec.
Synthesis result

Benchmark spec.
Synthesis result

Baselines Our algs. Baselines Our algs.

Model p.l. p.a. STR LWN SMC EMC Model p.l. p.a. STR LWN SMC EMC

complex - - × × 7 5 serpent - - × × 3 3

complex
√

- × × 7 5 speedDis1 - - × × 4 4

complex
√ √

× × 3 3 speedDis2 - - × × 4 4

cousot9 - - × 3 3 3 spdSimMul - - × × 4 4

cousot9
√

- × × 4 4 spdSimMulDep - - × × 4 4

loops - - × × 4 3 spdSglSgl2
√ √

× × 5 5

nestedLoop
√ √

× × 4 3 speedpldi3 - - × 3 3 3

realheapsort - - × 3 3 3 speedpldi3
√

- × × 4 4

RHS step1 - - × 3 3 3 counterexStr1 -
√

N/A 3 3 3

RHS step1
√ √

× 3 3 3 counterexStr2 -
√

× × 4 4

realshellsort
√ √

× 2 2 2

表 1 The list of benchmarks in which a feasibility difference is observed between baselines and

proposed algorithms. Ticks in “p.l.” and “p.a.” indicate the benchmark has a probabilistic loop

and assignment, respectively. Numbers in the result indicate that the algorithm found a LexRSM

with that dimension; the crosses indicate failures; “N/A” means we did not run the experiment.

8 Related Work

There is a rich body of studies in 1-dimensional

RSM [12–14, 17, 20–23, 28–30], while lexicographic

RSM is relatively new [2, 15]. Our paper gener-

alizes the latest work [15] on LexRSM as follows:

(a) Soundness of LexRSM as a stochastic process:

soundness of ε-fixable LexRSMs (Def. 4.2) general-

izes [15, Thm. 1] in the sense that every GLexRSM

is ε-fixable for any ε > 0 (Thm. 4.4); (b) Sound-

ness of LexRSM as a function on program states:

our result (Thm. 5.4) generalizes [15, Thm. 2]

under the linearity and well-behavedness assump-

tions; (c) Soundness and completeness of LexRSM

synthesis algorithms: our result generalizes the re-

sults for one of two algorithms in [15] that assumes

boundedness assumption on assignment distribu-

tion [15, Thm. 3].

The work [24] also considers a relaxed non-

negativity of RSMs. Their descent supermartingale,

which acts on while loops, requires well-foundedness

only at every entry into the loop body. A major

difference from our LexRSM is that they only con-

sider 1-dimensional RSMs; therefore, the problem

of relaxing the LW non-negativity does not appear

in their setting. Compared with their RSM, our

LexRSM has an advantage in verifying PPs with a

structure shown in Fig. 2, where the value of our

LexRSM can be arbitrarily small upon the loop en-

trance (at some dimension; see η2 at ℓ1 in Fig. 2).

The work [29] extends the applicability of stan-

dard RSM on a different aspect from LexRSM. The

main feature of their RSM is that it can verify AST

of the symmetric random walk. While our LexRSM

cannot verify AST of this process, the RSM by [29]

is a 1-dimensional one, which typically struggles

on PPs with nested structures. Such a difference

can be observed from the experiment result in [31]

(compare [31, Table 2] and nested loops, sequen-

tial loops in [31, Table 1]).
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Hasheminezhad, R.: Algorithmic analysis of qual-

itative and quantitative termination problems for

affine probabilistic programs, Proceedings of the

43rd Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, 2016,

pp. 327–342.

[15] Chatterjee, K., Goharshady, E. K., Novotný,
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