
日本ソフトウェア科学会第 40 回大会 (2023 年度) 講演論文集

A Categorical Framework for Program

Semantics and Semantic Abstraction

(Extended Abstract)

Shin-ya Katsumata　Xavier Rival　 Jérémy Dubut
Categorical semantics of type theories are often characterized as structure-preserving functors. This is

because in category theory both the syntax and the domain of interpretation are uniformly treated as struc-

tured categories, so that we can express interpretations as structure-preserving functors between them. This

mathematical characterization of semantics makes it convenient to manipulate and to reason about relation-

ships between interpretations. Motivated by this success of functorial semantics, we address the question

of finding a functorial analogue in abstract interpretation, a general framework for comparing semantics, so

that we can bring similar benefits of functorial semantics to semantic abstractions used in abstract interpre-

tation. Major differences concern the notion of interpretation that is being considered. Indeed, conventional

semantics are value-based whereas abstract interpretation typically deals with more complex properties. In

this paper, we propose a functorial approach to abstract interpretation and study associated fundamental

concepts therein. In our approach, interpretations are expressed as oplax functors in the category of posets,

and abstraction relations between interpretations are expressed as lax natural transformations representing

concretizations. We present examples of these formal concepts from monadic semantics of programming

languages and discuss soundness.

1 Introduction

In a categorical setting, programs semantics can

often be characterized as functors. In this setup,

programs are viewed as morphisms and morphism

composition describes how programs can be com-

posed. As an example, in the case of typed func-

tional programs, one may let objects be types and

morphisms be functions. More precisely, a mor-

∗ プログラム意味論とその抽象化のための圏論的枠組み
This is an excerpt of the introduction section of the

paper accepted by MFPS 2023. This excerpt should

not be regarded as a publication.

勝股 審也, 国立情報学研究所, National Institute of

Informatics.

ジェレミー デュブ, 産業総合研究所, Advanced Institute

of Science and Technology.

ザビエル リバル, フランス国立情報学自動制御研究所,

Institut National de Recherche en Informatique et

en Automatique.

phism from object a to object b denotes a function

of type a → b. Then, the semantics maps programs

to morphisms between objects that interpret input

and output elements into a well-chosen semantic

domain. This construction is very general and ac-

cepts a wide range of semantic domains.

This functorial presentation of semantics is

prominent in the categorical semantics of type the-

ories and algebraic theories. There, both type the-

ories and semantic categories are treated as cate-

gories possessing a common structure, and the se-

mantics itself is presented as a structure-preserving

functor. A typical example is the categorical

semantics of the simply typed lambda-calculus,

commonly studied under the well-known Curry-

Howard-Lambek correspondence [9]; the calculus

modulo βη-equality is presented as a Cartesian

closed category, and its semantics in a Cartesian

closed category is presented as a functor preserv-

ing finite products and exponentials. Another ex-

ample is the categorical presentation of algebraic

theories as a particular kind of categories with fi-

nite products (called Lawvere theories [10] [1]), and

their models as finite-product preserving functors.

These categorical and syntax-free presentations of

the calculus and its semantics brought significant

convenience and advances to the study of type the-

ories and their semantics. Additionally, monads

turned out to be the tool of choice in order to con-

struct semantics for effectful programs [11].

Abstract interpretation [4] provides a framework

to compare program semantics of varying levels of

expressiveness, and to derive sound approximations

of program semantics, based on a given abstrac-

tion relation. It has been used to describe relation-

ships across program semantics [3], program analy-

sis [4] [2] [8], program transformations [7], and more.

However, it is usually formalized in order theory

since this presentation suffices in many applica-

tions. Therefore, it is not immediately compatible

with the aforementioned categorical presentation.

Although the notion of Galois connection, which

is abundantly used in abstract interpretation

works [4] [6], is adjunctions between posets, few

works have studied a more complete description of

abstract interpretation frameworks in a categorical

setup. Among the works that relied on categorical

tools in order to describe some specific semantic ab-

straction concepts for specific purposes, we can cite,

Steffen et al [13] who integrate both concrete and

abstract semantics in a categorical settings in or-

der to examine questions related to soundness and

completeness, with respect to a given set of behav-

iors. Venet [14] uses mathematical tools that stem

from category theory in order to construct specific

families of abstract domains. More precisely, he ap-

plies the Grothendieck construction to generalize

constructions such as reduced product and cardi-

nal power [5]. More recently, Sergey et al. [12] took

advantage of the monadic structure of a semantics

of lambda-calculus to derive a static control flow

analysis for a small functional language as well as

an implementation in Haskell.

In this work, we seek for more comprehen-

sive foundations for classical abstract interpreta-

tion techniques into the categorical semantics set-

tings. We start with an interpretation of programs

as morphisms in a syntactic category and seman-

tics as functors from programs to the category of

posets. We formalize and generalize the notion of

collecting semantics typically used in program anal-

ysis as a decomposition of such a functor. In this

setup, we integrate the notion of abstraction us-

ing some form of natural transformations between

these functors. More precisely, the approximation

inherent in sound, incomplete abstractions are ac-

counted for using lax natural transformations. We

show that this construction also enables the ab-

stract interpretation of a basic language.

To achieve these goals, we build upon a categori-

cal interpretation of programs and their semantics.

In our categorical formalism, the design of an ab-

stract semantics with respect to a denotational se-

mantics J−K : L → C proceeds as follows. First, we

turn the denotational semantics into a functorial

collecting semantics by composing J−K with a func-

tor C : C → Pos (where Pos denotes the category

of posets and monotone functions between them),

which we call property functor. This functor plays

the role of attaching a notion of property and a di-

rect image operation to the category C. This step

is crucial for the design of the analysis, as it fixes

the concrete semantics the analysis is built upon.

Then, an analysis using abstract domains over the

collecting semantics C◦J−K is expressed as an oplax

functor A : L → Pos equipped with a lax natural

transformation γ : A → C ◦ J−K representing a con-

cretization of interpretation:

L J−K ++

A

))
⇓γ Pos

C C

22 (1)

Here, the functor A being oplax means that it only

satisfies weakened functor axioms. The lax nat-

ural transformations are also weakening of natu-

ral transformations, replacing the naturality axiom

to an inequality. The use of oplax functors for

modeling analysis was initiated by Steffen, Jay and

Mendler [13]. We adopt the same approach, and

further bring some basic concepts that are not cov-

ered in [13] into the oplax functor formalism.

The common approach relies on fixing such an

abstraction relation (here described by γ) and seek-

ing for a sound, possibly approximate A that can

be implemented efficiently. A natural and impor-

tant question is how such an (A, γ) pair can be

constructed. This can be done by extending the

collecting semantics with a family of Galois con-

nections, which are abundantly used in abstract

interpretation, or with a family of concretization

functions when best abstraction cannot be ensured.

This story naturally extends to the monadic

semantics of various effectful programming lan-

guages. Indeed, as discussed earlier, the semantics

of such programs is often derived using Kleisli cat-

egories of monads. Assuming a base category C for

values and a monad T for effects, effectful programs

are interpreted in the Kleisli category CT , and the

semantics takes the form of a functor F : L → CT .

We then derive a collecting semantics by composing

it with a functor CT → Pos, and its abstraction is

given, following the lax natural transformation dis-

cussed previously. Therefore, another benefit of our

approach is to simplify the design of static analyses

for effectful programs, thanks to a better integra-

tion of program semantics and abstraction.

To summarize, upon the work by Steffen, Jay and

Mendler [13], we formalize abstract interpretation

in a functorial semantics framework. The new in-

gredients from [13] are the following:

1. We show that interpretations (oplax functors)

are closed under the induction operation by Ga-

lois connections. This induction also comes

with a concretizations of interpretations, for-

mulated as lax natural transformations.

2. We give a categorical formulation of collect-

ing semantics, which is the starting point of

the development of abstract interpretations. In

our formulation, a collecting semantics is an

extension of a standard denotational seman-

tics with a property functor, which attaches

forward predicate transformers to the model

category of the denotational semantics.

3. We present two examples of developments of

abstract interpretations, one for a while lan-

guage over generic computational effects, and

the other for the simply typed lambda calculus.

An additional result that follows from this ap-

proach is a strongest postcondition predicate

transformer semantics for the while language

over general monads and truth value complete

lattices. This semantics is a generalization

of the strongest postcondition semantics intro-

duced in [15].

Acknowledgement The first and third authors

were supported by ERATO HASUO Metamath-

ematics for Systems Design Project (No. JP-

MJER1603), JST. The third author was also

supported by JST, CREST Grant Number JP-

MJCR22M1. The second author was supported

by the French ANR VeriAMOS project. The au-

thors are grateful to James Haydon for his criti-

cal reading of the manuscript, and implementation

proposals and suggestions of new directions during

discussions. The authors are also grateful to Ichiro

Hasuo for insightful comments and suggestions.

参 考 文 献
[1] Adámek, J., Rosický, J., Vitale, E., and Law-

vere, F. W.: Algebraic Theories: A Categorical In-

troduction to General Algebra, Cambridge Tracts in

Mathematics, Cambridge University Press, 2010.

[2] Blanchet, B., Cousot, P., Cousot, R., Feret, J.,

Mauborgne, L., Miné, A., Monniaux, D., and Rival,

X.: A static analyzer for large safety-critical soft-

ware, Conference on Programming Languages De-

sign and Implementation (PLDI), Cytron, R. and

Gupta, R.(eds.), ACM, 2003, pp. 196–207.

[3] Cousot, P.: Constructive design of a hierar-

chy of semantics of a transition system by ab-

stract interpretation, Conference on Mathematical

Foundations of Progamming Semantics (MFPS),

Electronic Notes in Theoretical Computer Science

(ENTCS), Vol. 6, Elsevier, 1997, pp. 77–102.

[4] Cousot, P. and Cousot, R.: Abstract Interpreta-

tion: A Unified Lattice Model for Static Analysis of

Programs by Construction or Approximation of Fix-

points, Symposium on Principles of Programming

Languages (POPL), ACM, 1977.

[5] Cousot, P. and Cousot, R.: Systematic De-

sign of Program Analysis Frameworks, Symposium

on Principles of Programming Languages (POPL),

ACM, 1979.

[6] Cousot, P. and Cousot, R.: Abstract Interpre-

tation Frameworks, Journal of Logic and Computa-

tion, Vol. 2, No. 4(1992), pp. 511–547.

[7] Cousot, P. and Cousot, R.: Systematic design of

program transformation frameworks by abstract in-

terpretation, Symposium on Principles of Program-

ming Languages (POPL), ACM, 2002, pp. 178–190.

[8] Distefano, D., Fähndrich, M., Logozzo, F.,

and O’Hearn, P. W.: Scaling static analyses at

Facebook, Communications of the ACM, Vol. 62,

No. 8(2019), pp. 62–70.

[9] Lambek, J. and Scott, P. J.: Introduction to

Higher-Order Categorical Logic, Cambridge Stud-

ies in Advanced Mathematics, Cambridge Univer-

sity Press, July 1988.

[10] Lawvere, W.: Functorial Semantics of Algebraic

Theories, PhD Thesis, Columbia University, 1963.

[11] Moggi, E.: Notions of Computation and

Monads, Information and Computation, Vol. 93,

No. 1(1991), pp. 55–92.

[12] Sergey, I., Devriese, D., Might, M., Midt-

gaard, J., Darais, D., Clarke, D., and Piessens, F.:

Monadic abstract interpreters, Conference on Pro-

gramming Languages Design and Implementation

(PLDI), ACM, 2013, pp. 399–410.

[13] Steffen, B., Jay, C. B., and Mendler, M.: Com-

positional characterization of observable program

properties, Theoretical Informatics and Applica-

tions, Vol. 26(1992), pp. 403–424.

[14] Venet, A.: Abstract Cofibered Domains: Appli-

cation to the Alias Analysis of Untyped Programs,

Static Analysis Symposium (SAS), Lecture Notes

in Computer Science, Vol. 1145, Springer, 1996,

pp. 366–382.

[15] Zhang, L. and Kaminski, B. L.: Quantitative

Strongest Post: A Calculus for Reasoning about the

Flow of Quantitative Information, Proc. ACM Pro-

gram. Lang., Vol. 6, No. OOPSLA1(2022).

