
日本ソフトウェア科学会第 40 回大会 (2023 年度) 講演論文集

Connectivity in the presence of an opponent

(extended abstract)

Zihui Liang, Bakh Khoussainov, Toru Takisaka, Mingyu Xiao

The paper introduces two player connectivity games played on finite bipartite graphs. Algorithms that solve

these connectivity games can be used as subroutines for solving Müller games. Müller games constitute a

well established class of games in model checking and verification. In connectivity games, the objective of

one of the players is to visit every node of the game graph infinitely often. The first contribution of this

paper is our proof that solving connectivity games can be reduced to the incremental strongly connected

component maintenance (ISCCM) problem, an important problem in graph algorithms and data structures.

The second contribution is that we non-trivially adapt two known algorithms for the ISCCM problem to

provide two efficient algorithms that solve the connectivity games problem. Finally, based on the techniques

developed, we recast Horn’s polynomial time algorithm that solves explicitly given Müller games and provide

the first correctness proof of the algorithm. Our algorithms are more efficient than that of Horn’s algorithm.

Our solution for connectivity games is used as a subroutine in the algorithm.

Background: explicit Müller games and con-

nectivity games. In the area of logic, model

checking, and verification of reactive systems,

studying games played on graphs is a key research

topic [5]. This is mostly motivated through mod-

elling reactive systems and reductions of model

checking problems to games on graphs. Under-

standing the algorithmic content of determinacy re-

sults is also at the core of this research. Müller

games constitute a well-established class of games

for verification. Recall that a Müller game is a tu-

ple G = (V0, V1, E,Ω), where

• The tuple G = (V0 ∪ V1, E), called the arena

of G, is a finite directed bipartite graph so that

∗ 対戦相手の存在下における接続性
This is an unreferred paper, whose content is to ap-

pear in the proceedings of the 31st Annual European

Symposium on Algorithms (ESA 2023).

Zihui Liang, Bakh Khoussainov, Toru Takisaka,

Mingyu Xiao,電子科技大学計算機科学・工学部, School

of Computer Science and Engineering, University of

Electronic Science and Technology of China.

V0 and V1 partition the set V = V0 ∪ V1.

• The set E ⊆ (V0 × V1) ∪ (V1 × V0) of edges.

• V0 and V1 are sets of vertices (or nodes) from

which player 0 and player 1, respectively, move.

• Ω ⊆ 2V is a collection of winning sets.

The players play a Müller game by moving a

given token along the edges of the graph. The to-

ken is initially placed on a node v0 ∈ V . The play

proceeds in rounds. At any round of the play, if

the token is placed on a player σ’s node v, then

player σ chooses a sccessor u of v, moves the token

to u and the play continues on to the next round.

Formally, a play (starting from v0) is a sequence

ρ = v0, v1, . . . such that (vi, vi+1) ∈ E for all i ∈ N.

If a play reaches a node v with no successor, then

player 1 wins the play. For an infinite play ρ, set

Inf(ρ) = {v ∈ V | ∃ωi(vi = v)}. We say player 0

wins the play ρ if Inf(ρ) ∈ Ω; otherwise, player 1

wins the play. By the result of Martin [11], Müller

games are determined ; that is, for a given vertex v

of a Müller game, either player 0 or 1 has a winning

strategy from v (i.e., one of the players can enforce

their win from v no matter how the opponent makes

their transitions). The solution of a Müller game

is a partition {Win0,Win1} of the vertex set V ,

where v ∈ Winσ if and only if player σ wins the

game starting at v, σ ∈ {0, 1}.
The complexity of solving Müller games depends

on the presentation of the games. For many rea-

sonable representations—win-set, Müller, Zielonka

DAGs, and Emerson-Lei—the problem is known to

be PSPACE hard [8]. Meanwhile, F. Horn [7] pro-

vides a polynomial time algorithm that solves ex-

plicitly given Müller games ; here, a Müller game

G = (V0, V1, E,Ω) is explicitly given if V0, V1, E,

and all sets in Ω are fully presented as input.

Horn’s algorithm iteratively calls a subroutine for

solving a particular Müller game, which we call a

connectivity game. Here, a Müller game is called

a connectivity game if Ω = {V }, i.e., the game re-

quires player 0 to visit every vertex infinitely many

often. In a connectivity game G, we always have ei-
ther Win0 = V or Win0 = ∅; we say player 0 wins

G in the former case, or otherwise player 1 wins

G. Connectivity games naturally appear in other

algorithms for solving Müller games; they also of-

fer a natural two-player extension of strongly con-

nected components (SCCs), which is a fundamental

notion in graph theory. To date, the best known

time bound for solving connectivity games has been

O(|V ||E|) [2] [3] [4] [9].

Contribution. This is an extended abstract of

our resent publication [10]. Below we summarize

the contribution in the paper.

Contribution 1: state-of-the-art algorithms

for solving connectivity games and explicit

Müller games. We provide two algorithms

for solving connectivity games that run in time

O((
√

|V1| + 1)|E| + |V1|2) and O((|V1| + |V0|) ·
|V0| log |V0|), respectively. Both improve the exist-

d

a b c

e

d

a b c

e

図 1 Reduction into an ISCCM problem.

ing time bound O(|V ||E|). The crux of our new

algorithms is a reduction of the problem into an

incremental strongly connected component mainte-

nance (ISCCM) problem, i.e., an online compu-

tation problem of SCCs of a graph whose edges

may increase. Intuitively, for a given arena G =

(V0 ∪ V1, E), we consider the following procedure:

1. Initialize a directed graph G′ = (V ′, E′) with

(V0 ∪ V1, E0), where Eσ is the collection of all

edges from player σ’s node. Also initialize an

edge set E′
1 with E1.

2. For each (v, u) ∈ E′
1, if it is a unique edge

from v in E′
1, then pop it and add it to E′.

3. Compute SCCs of G′ (recall an SCC of G′

is a maximal subset Ṽ of V ′ such that there

is a path between any distinct vertices in Ṽ).

If there is no non-trivial SCC (i.e., those which

has at least two vertices), then stop; otherwise,

merge each SCC into a single vertex, merge

each identical edges in E′
1 into one, and go to

Step 2.

For example, suppose an arena in the left of Fig-

ure 1 is given; there, circles and boxes represent

nodes of player 0 and 1, respectively. Then G′ is

initialized with the graph whose edges consist of

the thick arrows; and E′
1 is initialized with the set

of dotted arrows. The first iteration of Step 2 adds

edges (b, c) and (d, a) to G′, which make the vertex

set Ṽ = {a, b, c, d} an SCC of G′ (see the right of

Figure 1). The first iteration of Step 3 merges Ṽ

into a single vertex, and merges (e, a) and (e, c) into

a single edge (e, Ṽ); the second iteration of Step 2

and 3 further turns G′ into a singleton; and then the

procedure stops after yet another iteration, with no

update on G′.

We have proved that the connectivity game on G

is won by player 0 if and only if the above proce-

dure turns G′ into a singleton†1 ([10], Theorem 8).

By performing this procedure via two known algo-

rithms for the ISCCM problem [1] [6], we realize the

algorithms for solving connectivity games that run

in the desired time. The details can be found in

Section 2 and 3 of [10]. This result also improves

the time bound of Horn’s algorithm, which calls an

algorithm for solving connectivity games as a sub-

routine ([10], Theorem 20 and 21).

Contribution 2: a correctness proof of

Horn’s algorithm. We point out that the correct-

ness proof of Horn’s algorithm in [7] has non-trivial

flaws, and provide an alternative proof based on a

different idea.

The flaws in the proof are related to a certain

game transformation in the algorithm. Horn’s al-

gorithm solves a Müller game by evaluating the

winner of the game for each winning set W ∈ Ω

one by one. In each evaluation round, the algo-

rithm also possibly transforms the Müller game to

a new one (this takes care of the case “player 0 can

win, but they cannot choose which winning set to

achieve”). For example, suppose a Müller game in

the left of Figure 2 is given. Horn’s algorithm first

pops W1 = {a, b} from Ω, and solves the connectiv-

ity game overW1. The algorithm finds that player 0

wins the connectivity game, while player 1 can exit

W1 in the Müller game (via the edge (b, d)). This

fact tells us that, although player 0 cannot enforce

the winning conditionW1 exclusively, they may still

be able to enforce either W1 or W2 = {a, b, c, d}

†1 Strictly speaking, in [10] we consider an equiva-

lent procedure that does not perform actual merg-

ing of vertices and edges. There, G′ is turned into

an SCC instead of a singleton.

c d

a b

Ω = {{a, b}, {a, b, c, d}}

c

a b

e

d

Ω = {{a, b, c, d, e}}

図 2 Game transformation in Horn’s algorithm.

(where the choice of W1 or W2 is up to player 1). In

such a case, Horn’s algorithm transforms the Müller

game by: (1) adding a new node e and edges so

that player 0 can force player 1 to exit W1, and

(2) swapping each superset W ′ of W1 in Ω with

W ′∪{e}. In the example, the original Müller game

is transformed into the one in the right of Figure 2.

Horn’s algorithm then popsW ′
2 = {a, b, c, d, e} from

Ω, solves the connectivity game over W ′
2, and finds

player 0 wins it; as player 1 cannot exit W ′
2 in the

(transformed) Müller game, the algorithm reports

player 0 wins the original Müller game at each node

in W ′
2 ∩ V = V .

In Horn’s paper [7], the correctness proof of his

algorithm is conveyed as if the following is true,

which is actually not: if W ∈ Ω is sensible (i.e., if

the restriction of the game over W is deadlock-free),

then it is still sensible after the transformation of

the game. In our view, there is no easy way to re-

cover the proof in [7]; a discussion on this point is

given in Section 6 of [10]. The key observation in

our alternative proof is that the transformation in

Horn’s algorithm preserves the winner of the game

at each node ([10], Theorem 17). The details of the

correctness proof is given in Section 5 of [10].

参 考 文 献
[1] Bender, M. A., Fineman, J. T., and Gilbert,

S.: A new approach to incremental topological or-

dering, Proceedings of the twentieth annual ACM-

SIAM symposium on Discrete algorithms, SIAM,

2009, pp. 1108–1115.

[2] Bodlaender, H. L., Dinneen, M. J., and Khous-

sainov, B.: On game-theoretic models of net-

works, Algorithms and Computation: 12th Inter-

national Symposium, ISAAC 2001 Christchurch,

New Zealand, December 19–21, 2001 Proceedings

12, Springer, 2001, pp. 550–561.

[3] Bodlaender, H. L., Dinneen, M. J., and Khous-

sainov, B.: Relaxed update and partition net-

work games, Fundamenta Informaticae, Vol. 49,

No. 4(2002), pp. 301–312.

[4] Dinneen, M. J. and Khoussainov, B.: Update

networks and their routing strategies, International

Workshop on Graph-Theoretic Concepts in Com-

puter Science, Springer, 2000, pp. 127–136.

[5] Grädel, E., Thomas, W., and Wilke, T.: Au-

tomata, logics, and infinite Games. LNCS, vol. 2500,

2002.

[6] Haeupler, B., Kavitha, T., Mathew, R., Sen,

S., and Tarjan, R. E.: Incremental cycle detection,

topological ordering, and strong component mainte-

nance, ACM Transactions on Algorithms (TALG),

Vol. 8, No. 1(2012), pp. 1–33.

[7] Horn, F.: Explicit Muller games are PTIME,

IARCS Annual Conference on Foundations of Soft-

ware Technology and Theoretical Computer Sci-

ence, Schloss Dagstuhl-Leibniz-Zentrum für Infor-

matik, 2008.

[8] Hunter, P. and Dawar, A.: Complexity bounds

for regular games, International Symposium on

Mathematical Foundations of Computer Science,

Springer, 2005, pp. 495–506.

[9] Khaliq, I., Khoussainov, B., and Liu, J.: Ex-

tracting winning strategies in update games, Mod-

els of Computation in Context: 7th Conference

on Computability in Europe, CiE 2011, Sofia,

Bulgaria, June 27-July 2, 2011. Proceedings 7,

Springer, 2011, pp. 142–151.

[10] Liang, Z., Khoussainov, B., Takisaka, T., and

Xiao, M.: Connectivity in the presence of an oppo-

nent, 31st Annual European Symposium on Algo-

rithms, ESA 2023, September 4-6, 2023, Amster-

dam, The Netherlands, To appear.

[11] Martin, D. A.: Borel determinacy, Annals of

Mathematics, Vol. 102, No. 2(1975), pp. 363–371.

