
Online Causation Monitoring of Signal

Temporal Logic

張 振亜　　安 杰　　パオロ アルカイニ　　蓮尾 一郎

Online monitoring is an effective validation approach for hybrid systems, that, at runtime, checks whether

the (partial) signals of a system satisfy a specification in, e.g., Signal Temporal Logic (STL). The classic

STL monitoring is performed by computing a robustness interval that specifies, at each instant, how far the

monitored signals are from violating and satisfying the specification. However, since a robustness interval

monotonically shrinks during monitoring, classic online monitors may fail in reporting new violations or

in precisely describing the system evolution at the current instant. In this paper, we tackle these issues

by considering the causation of violation or satisfaction, instead of directly using the robustness. We first

introduce a Boolean causation monitor that decides whether each instant is relevant to the violation or

satisfaction of the specification. We then extend this monitor to a quantitative causation monitor that tells

how far an instant is from being relevant to the violation or satisfaction. We further show that classic moni-

tors can be derived from our proposed ones. Experimental results show that the two proposed monitors are

able to provide more detailed information about system evolution, without requiring a significantly higher

monitoring cost.

This work was originally published at 35th Inter-

national Conference on Computer Aided Verification

(CAV2023) [38].

1 Introduction

Safety-critical systems require strong correctness

guarantees. Due to the complexity of these sys-

tems, offline verification may not be able to guar-

antee their total correctness, as it is often very dif-

ficult to assess all possible system behaviors. To

mitigate this issue, runtime verification [4, 29, 36]

has been proposed as a complementary technique

that analyzes the system execution at runtime. On-

line monitoring is such an approach that checks

Zhenya Zhang,九州大学システム情報科学研究院, Faculty

of Information Science and Electrical Engineering,

Kyushu University.

Jie An, Paolo Arcaini and Ichiro Hasuo, 国立情報学研
究所, National Institute of Informatics.

whether the system execution (e.g., given in terms

of signals) satisfies or violates a system specifica-

tion specified in a temporal logic [28, 34], e.g., Sig-

nal Temporal Logic (STL) [30].

Quantitative online monitoring is based on the

STL robust semantics [17, 21] that not only tells

whether a signal satisfies or violates a specification

φ (i.e., the classic Boolean satisfaction relation),

but also assigns a value in R ∪ {∞,−∞} (i.e., ro-

bustness) that indicates how robustly φ is satisfied

or violated. However, differently from offline as-

sessment of STL formulas, an online monitor needs

to reason on partial signals and, so, the assessment

of the robustness should be adapted. We consider

an established approach [12] employed by classic

online monitors (ClaM in the following). It consists

in computing, instead of a single robustness value,

a robustness interval ; at each monitoring step, ClaM

identifies an upper bound [R]U telling the maximal

reachable robustness of any possible suffix signal

ClaM

図 1: ClaM – Robustness upper and lower bounds

of 2[0,100](v < 10)

(i.e., any continuation of the system evolution), and

a lower bound [R]L telling the minimal reachable

robustness. If, at some instant, [R]U becomes neg-

ative, the specification is violated; if [R]L becomes

positive, the specification is satisfied. In the other

cases, the specification validity is unknown.

Consider a simple example in Fig. 1. It shows

the monitoring of the speed of a vehicle (in the up-

per plot); the specification requires the speed to be

always below 10. The lower plot reports how the

upper bound [R]U and the lower bound [R]L of the

reachable robustness change over time. We observe

that the initial value of [R]U is around 8 and gradu-

ally decreases.†1 The monitor allows to detect that

the specification is violated at time b = 20 when

the speed becomes higher than 10, and therefore

[R]U goes below 0. After that, the violation sever-

ity progressively gets worse till time b = 30, when

[R]U becomes −5. After that point, the monitor

does not provide any additional useful information

about the system evolution, as [R]U remains stuck

at −5. However, if we observe the signal of the

speed after b = 30, we notice that (i) the severity

of the violation is mitigated, and the “1st violation

episode” ends at time b = 35; however, the monitor

†1 The value of lower bound [R]L is not shown in the

figure, as not relevant. In the example, it remains

constant before b = 100, and the value is usually

set either according to domain knowledge about

system signals, or to −∞ otherwise.

ClaM does not report this type of information; (ii) a

“2nd violation episode” occurs in the time interval

[40, 45]; the monitor ClaM does not distinguish the

new violation.

The reason for the issues reported in the example

is that the upper and lower bounds are monotoni-

cally decreasing and increasing; this has the conse-

quence that the robustness interval at a given step

is “masked” by the history of previous robustness

intervals, and, e.g., it is not possible to detect mit-

igation of the violation severity. Moreover, as an

extreme consequence, as soon as the monitor ClaM

assesses the violation of the specification (i.e., the

upper bound [R]U becomes negative), or its satis-

faction (i.e., the lower bound [R]L becomes posi-

tive), the Boolean status of the monitor does not

change anymore. Such characteristic directly de-

rives from the STL semantics and it is known as

the monotonicity [9–11] of classic online monitors.

Monotonicity has been recognized as a problem of

these monitors in the literature [10, 37, 41], since

it does not allow to detect specific types of infor-

mation that are “masked”. We informally define

two types of information masking that can occur

because of monotonicity:

evolution masking : the monitor may not properly

report the evolution of the system execution,

e.g., mitigation of violation severity may not

be detected;

violation masking : as a special case of evolution

masking, the first violation episode during the

system execution “masks” the following ones.

The information not reported by ClaM because

of information masking, is very useful in several

contexts. First of all, in some systems, the first

violation of the specification does not mean that

the system is not operating anymore, and one may

want to continue monitoring and detect all the suc-

ceeding violations; this is the case, e.g., of the mon-

itoring approach reported by Selyunin et al. [37]

in which all the violations of the SENT protocol

must be detected. Moreover, having a precise de-

scription of the system evolution is important for

the usefulness of the monitoring; for example, the

monitoring of the speed in Fig. 1 could be used

in a vehicle for checking the speed and notifying

the driver whenever the speed is approaching the

critical limit; if the monitor is not able to precisely

capture the severity of violation, it cannot be used

for this type of application.

Some works [10,37,41] try to mitigate the mono-

tonicity issues, by “resetting” the monitor at spe-

cific points. A recent approach has been proposed

by Zhang et al. [41] (called ResM in the following)

that is able to identify each “violation episode”

(i.e., it solves the problem of violation masking),

but does not solve the evolution masking problem.

For the example in Fig. 1, ResM is able to detect

the two violation episodes in intervals [20, 35] and

[40, 45], but it is not able to report that the speed

decreases after b = 10 (in a non-violating situa-

tion), and that the severity of the violation is mit-

igated after b = 30.

Contribution. In this paper, in order to provide

more information about the evolution of the moni-

tored system, we propose to monitor the causation

of violation or satisfaction, instead of considering

the robustness directly. To do this, we rely on the

notion of epoch [5]. At each instant, the violation

(satisfaction) epoch identifies the time instants at

which the evaluation of the atomic propositions of

the specification φ causes the violation (satisfac-

tion) of φ.

Based on the notion of epoch, we define a

Boolean causation monitor (called BCauM) that, at

runtime, not only assesses the specification viola-

tion/satisfaction, but also tells whether each in-

stant is relevant to it. Namely, BCauM marks each

current instant b as (i) a violation causation in-

stant, if b is added to the violation epoch; (ii) a

satisfaction causation instant, if b is added to the

satisfaction epoch; (iii) an irrelevant instant, if b

is not added to any epoch. We show that BCauM

is able to detect all the violation episodes (so solv-

ing the violation masking issue), as violation causa-

tion instants can be followed by irrelevant instants.

Moreover, we show that the information provided

by the classic Boolean online monitor can be de-

rived from that of the Boolean causation monitor

BCauM.

However, BCauM just tells us whether the current

instant is a (violation or satisfaction) causation in-

stant or not, but does not report how far the in-

stant is from being a causation instant. To this

aim, we introduce the notion of causation distance,

as a quantitative measure characterizing the spatial

distance of the signal value at b from turning b into

a causation instant. Then, we propose the quanti-

tative causation monitor (QCauM) that, at each in-

stant, returns its causation distance. We show that

using QCauM, besides solving the violation masking

problem, we also solve the evolution masking prob-

lem. Moreover, we show that we can derive from

QCauM both the classic quantitative monitor ClaM,

and the Boolean causation monitor BCauM.

Experimental results show that the proposed

monitors, not only provide more information, but

they do it in an efficient way, not requiring a signif-

icant additional monitoring time w.r.t. the existing

monitors.

Outline. §2 reports necessary background. We

introduce BCauM in §3, and QCauM in §4. Experi-

mental assessment of the two proposed monitors is

reported in §5. Finally, §6 discusses some related

work, and §7 concludes the paper.

2 Preliminaries

In this section, we review the fundamentals of

signal temporal logic (STL) in §2. 1, and then in-

troduce the existing classic online monitoring ap-

proach in §2. 2.

2. 1 Signal Temporal Logic

Let T ∈ R+ be a positive real, and d ∈ N+ be a

positive integer. A d-dimensional signal is a func-

tion v : [0, T]→ Rd , where T is called the time hori-

zon of v. Given an arbitrary time instant t ∈ [0, T],

v(t) is a d -dimensional real vector; each dimension

concerns a signal variable that has a certain phys-

ical meaning, e.g., speed, RPM, acceleration, etc.

In this paper, we fix a set Var of variables and as-

sume that a signal v is spatially bounded, i.e., for

all t ∈ [0, T], v(t) ∈ Ω, where Ω is a d -dimensional

hyper-rectangle.

Signal temporal logic (STL) is a widely-adopted

specification language, used to describe the ex-

pected behavior of systems. In Def. 1 and Def. 2,

we respectively review the syntax and the robust

semantics of STL [17,21,30].

Definition 1 (STL syntax). In STL, the atomic

propositions α and the formulas φ are defined as

follows:

α ::≡ f(w1, . . . , wK) > 0

φ ::≡ α | ⊥ | ¬φ | φ ∧ φ | 2Iφ | 3Iφ | φ UI φ
Here f is a K-ary function f : RK → R,

w1, . . . , wK ∈ Var, and I is a closed interval over

R≥0, i.e., I = [l, u], where l, u ∈ R and l ≤ u.

In the case that l = u, we can use l to stand

for I. 2,3 and U are temporal operators, which

are known as always, eventually and until, respec-

tively. The always operator 2 and eventually op-

erator 3 are two special cases of the until opera-

tor U , where 3Iφ ≡ ⊤ UI φ and 2Iφ ≡ ¬3I¬φ.
Other common connectives such as ∨,→ are intro-

duced as syntactic sugar: φ1 ∨φ2 ≡ ¬(¬φ1 ∧¬φ2),

φ1 → φ2 ≡ ¬φ1 ∨ φ2.

Definition 2 (STL robust semantics). Let v be a

signal, φ be an STL formula and τ ∈ R+ be an in-

stant. The robustness R(v, φ, τ) ∈ R ∪ {∞,−∞}

of v w.r.t. φ at τ is defined by induction on the

construction of formulas, as follows.

R(v, α, τ) := f(v(τ)) R(v,⊥, τ) := −∞
R(v,¬φ, τ) := −R(v, φ, τ)

R(v, φ1 ∧ φ2, τ) := min (R(v, φ1, τ),R(v, φ2, τ))

R(v,2Iφ, τ) := inf
t∈τ+I

R(v, φ, t)

R(v,3Iφ, τ) := sup
t∈τ+I

R(v, φ, t)

R(v, φ1 UI φ2, τ) := sup
t∈τ+I

min

 R(v, φ2, t),

inf
t′∈[τ,t)

R(v, φ1, t
′)


Here, τ + I denotes the interval [l + τ, u+ τ].

The original STL semantics is Boolean, which

represents whether a signal v satisfies φ at an in-

stant τ , i.e., whether (v, τ) |= φ. The robust se-

mantics in Def. 2 is a quantitative extension that

refines the original Boolean STL semantics, in the

sense that, R(v, φ, τ) > 0 implies (v, τ) |= φ, and

R(v, φ, τ) < 0 implies (v, τ) ̸|= φ. More details can

be found in [21, Prop. 16].

2. 2 Classic Online Monitoring of STL

STL robust semantics in Def. 2 provides an offline

monitoring approach for complete signals. Online

monitoring, instead, targets a growing partial sig-

nal at runtime. Besides the verdicts ⊤ and ⊥, an
online monitor can also report the verdict unknown

(denoted as ?), which represents a status when the

satisfaction of the signal to φ is not decided yet.

In the following, we formally define partial signals

and introduce online monitors for STL.

Let T be the time horizon of a signal v, and let

[a, b] ⊆ [0, T] be a sub-interval in the time domain

[0, T]. A partial signal va:b is a function which is

only defined in the interval [a, b]; in the remaining

domain [0, T]\ [a, b], we denote that va:b = ϵ, where

ϵ stands for a value that is not defined.

Specifically, if a = 0 and b ∈ (a, T], a partial sig-

nal va:b is called a prefix (partial) signal; dually, if

b = T and a ∈ [0, b), a partial signal va:b is called a

suffix (partial) signal. Given a prefix signal v0:b, a

completion v0:b · vb:T of v0:b is defined as the con-

catenation of v0:b with a suffix signal vb:T .

Definition 3 (Classic Boolean STL online moni-

tor). Let v0:b be a prefix signal, and φ be an STL

formula. An online monitor M(v0:b, φ, τ) returns

a verdict in {⊤,⊥, ?} (namely, true, false, and

unknown), as follows:

M(v0:b, φ, τ) :=


⊤ if ∀vb:T .R(v0:b · vb:T , φ, τ) > 0

⊥ if ∀vb:T .R(v0:b · vb:T , φ, τ) < 0

? otherwise

Namely, the verdicts of M(v0:b, φ, τ) are inter-

preted as follows:

• if any possible completion v0:b ·vb:T of v0:b sat-

isfies φ, then v0:b satisfies φ;

• if any possible completion v0:b · vb:T of v0:b vi-

olates φ, then v0:b violates φ;

• otherwise (i.e., there is a completion v0:b · vb:T

that satisfies φ, and there is a completion

v0:b · vb:T that violates φ), then M(v0:b, φ, τ)

reports unknown.

Note that, by Def. 3 only, we cannot synthesize a

feasible online monitor, because the possible com-

pletions for v0:b are infinitely many. A constructive

online monitor is introduced in [12], which imple-

ments the functionality of Def. 3 by computing the

reachable robustness of v0:b. We review this moni-

tor in Def. 4.

Definition 4 (Classic Quantitative STL online

monitor (ClaM)). Let v0:b be a prefix signal, and

let φ be an STL formula. We denote by Rαmax and

Rαmin the possible maximum and minimum bounds

of the robustness R(v, α, τ)†2. Then, an online

monitor [R](v0:b, φ, τ), which returns a sub-interval

of [Rαmin, R
α
max] at the instant b, is defined as Ta-

ble 1, by induction on the construction of formu-

las. Here, f is defined as in Def. 1, and the

arithmetic rules over intervals I = [l, u] are de-

†2 R(v, α, τ) is bounded because v is bounded by Ω.

In practice, if Ω is not know, we set Rαmax and Rαmin

to, respectively, ∞ and −∞.

fined as follows: −I := [−u,−l] and min(I1, I2) :=

[min(l1, l2),min(u1, u2)].

We denote by [R]U(v0:b, φ, τ) and [R]L(v0:b, φ, τ)

the upper bound and the lower bound of

[R](v0:b, φ, τ) respectively. Intuitively, the two

bounds together form the reachable robustness in-

terval of the completion v0:b · vb:T , under any pos-

sible suffix signal vb:T . For instance, in Fig. 2, the

upper bound [R]U at b = 20 is 0, which indicates

that the robustness of the completion of the signal

speed, under any suffix, can never be larger than

0.

The quantitative online monitor ClaM in Def. 4

refines the Boolean one in Def. 3, and the Boolean

monitor can be derived from ClaM as follows:

• if [R]L(v0:b, φ, τ) > 0, it implies that

M(v0:b, φ, τ) = ⊤;
• if [R]U(v0:b, φ, τ) < 0, it implies that

M(v0:b, φ, τ) = ⊥;
• otherwise, if [R]L(v0:b, φ, τ) < 0 and

[R]U(v0:b, φ, τ) > 0, M(v0:b, φ, τ) = ?.

The classic online monitors are monotonic by def-

inition. In the Boolean monitor (Def. 3), with the

growth of v0:b, M(v0:b, φ, τ) can only turn from ?

to {⊥,⊤}, but never the other way around. In

the quantitative one (Def. 4), as shown in Lem. 1,

[R]U(v0:b, φ, τ) and [R]L(v0:b, φ, τ) are both mono-

tonic, the former one decreasingly, the latter one

increasingly. An example can be observed in Fig. 2.

Lemma 1 (Monotonicity of STL online mon-

itor). Let [R](v0:b, φ, τ) be the quantitative on-

line monitor for a partial signal v0:b and an

STL formula φ. With the growth of the par-

tial signal v0:b, the upper bound [R]U(v0:b, φ, τ)

monotonically decreases, and the lower bound

[R]L(v0:b, φ, τ) monotonically increases, i.e., for

two time instants b1, b2 ∈ [0, T], if b1 < b2, we

have (i) [R]U(v0:b1 , φ, τ) ≥ [R]U(v0:b2 , φ, τ), and

(ii) [R]L(v0:b1 , φ, τ) ≤ [R]L(v0:b2 , φ, τ).

表 1: classic online monitor

[R](v0:b, α, τ) :=


[
f (v0:b(τ)) , f (v0:b(τ))

]
if τ ∈ [0, b][

Rαmin, R
α
max

]
otherwise

[R](v0:b,¬φ, τ) := −[R](v0:b, φ, τ)

[R](v0:b, φ1 ∧ φ2, τ) := min
(
[R](v0:b, φ1, τ), [R](v0:b, φ2, τ)

)
[R](v0:b,2Iφ, τ) := inf

t∈τ+I

(
[R](v0:b, φ, t)

)
[R](v0:b, φ1 UI φ2, τ) := sup

t∈τ+I
min

(
[R](v0:b, φ2, t), inf

t′∈[τ,t)
[R](v0:b, φ1, t

′)
)

Proof. This can be proved by induction on the

structures of STL formulas. The detailed proof can

be found in the full version [39].

3 Boolean Causation Online Monitor

As explained in §1, monotonicity of classic on-

line monitors causes different types of information

masking, which prevents some information from be-

ing delivered. In this section, we introduce a novel

Boolean causation (online) monitor BCauM, that

solves the violation masking issue (see §1). BCauM

is defined based on online signal diagnostics [5,41],

which reports the cause of violation or satisfaction

of the specification at the atomic proposition level.

Definition 5 (Online signal diagnostics). Let v0:b

be a partial signal and φ be an STL specifica-

tion. At an instant b, online signal diagnos-

tics returns a violation epoch E⊖(v0:b, φ, τ), un-

der the condition [R]U(v0:b, φ, τ) < 0, and a sat-

isfaction epoch E⊕(v0:b, φ, τ), under the condition

[R]L(v0:b, φ, τ) > 0, as shown in Table 2. If

the conditions are not satisfied, E⊖(v0:b, φ, τ) and

E⊕(v0:b, φ, τ) are both ∅. Note that the definition is

recursive, thus the conditions should also be checked

for computing the violation and satisfaction epochs

of the sub-formulas of φ.

Computation for other operators can be inferred

by the presented ones and the STL syntax (Def. 1).

Intuitively, when a partial signal v0:b violates a

specification φ, a violation epoch starts collecting

the evaluations (identified by pairs of atomic propo-

sitions and instants) of the signal at the atomic

proposition level, that cause the violation of the

whole formula φ (which also applies to the satis-

faction cases in a dual manner). This is done in-

ductively, based on the semantics of different oper-

ators:

• in the case of an atomic proposition α, if α is

violated at τ , it collects ⟨α, τ⟩;
• in the case of a negation ¬φ, it collects the

satisfaction epoch of φ;

• in the case of a conjunction φ1 ∧ φ2, it col-

lects the union of the violation epochs of the

sub-formulas violated by the partial signal;

• in the case of an always operator 2Iφ, it col-

lects the epochs of the sub-formula φ at all the

instants t where φ is evaluated as being vio-

lated.

• in the case of an until operator φ1 UI φ2, it

collects the epochs of the sub-formula φ2 at all

the instants t and the epochs of φ1 at the in-

stants t′ ∈ [τ, t), in the case where the clause

“φ1 until φ2” is violated at t.

Example 1. The example in Fig. 2 illustrates how

an epoch is collected. The specification requires

that whenever the speed is higher than 10, the car

should decelerate within 5 time units. As shown by

the classic monitor, the specification is violated at

b = 25, since v becomes higher than 10 at 20 but

a remains positive during [20, 25]. Note that the

表 2: Online signal diagnostics

E⊖(v0:b, α, τ) :=

{⟨α, τ⟩} if [R]U(v0:b, α, τ) < 0

∅ otherwise
E⊖(v0:b,¬φ, τ) := E⊕(v0:b, φ, τ)

E⊖(v0:b, φ1 ∧ φ2, τ) :=
∪

i∈{1,2} s.t.

[R]U(v0:b,φi,τ)<0

E⊖(v0:b, φi, τ) E⊖(v0:b,2Iφ, τ) :=
∪

t∈τ+I s.t.

[R]U(v0:b,φ,t)<0

E⊖(v0:b, φ, t)

E⊖(v0:b, φ1 UI φ2, τ) :=
∪

t∈τ+I s.t.

[R]U(v0:b,φ1Utφ2,τ)<0

E⊖(v0:b, φ2, t) ∪
∪

t′∈[τ,t)

E⊖(v0:b, φ1, t
′)



E⊕(v0:b, α, τ) :=

{⟨α, τ⟩} if [R]L(v0:b, α, τ) > 0

∅ otherwise
E⊕(v0:b,¬φ, τ) := E⊖(v0:b, φ, τ)

E⊕(v0:b, φ1 ∧ φ2, τ) :=
∪

i∈{1,2} s.t.

[R]L(v0:b,φi,τ)>0

E⊕(v0:b, φi, τ) E⊕(v0:b,2Iφ, τ) :=
∪

t∈τ+I s.t.

[R]L(v0:b,φ,t)>0

E⊕(v0:b, φ, t)

E⊕(v0:b, φ1 UI φ2, τ) :=
∪

t∈τ+I s.t.

[R]L(v0:b,φ1Utφ2,τ)>0

E⊕(v0:b, φ2, t) ∪
∪

t′∈[τ,t)

E⊕(v0:b, φ1, t
′)



specification can be rewritten as φ ≡ 2[0,100](¬(v >

10)∨3[0,5](a < 0)). For convenience, we name the

sub-formulas of φ as follows:

φ′ ≡ ¬(v > 10) ∨3[0,5](a < 0)

φ1 ≡ ¬(v > 10) φ2 ≡ 3[0,5](a < 0)

α1 ≡ v > 10 α2 ≡ a < 0

Fig. 3 shows the violation epochs at two instants 30

and 35. First, at b = 30,

E⊖(v0:30, φ, 0) = ∪

 ∪
t∈[20,25] E

⊕(v0:30, α1, t)∪
t∈[20,30] E

⊖(v0:30, α2, t)


= ⟨α1, [20, 25]⟩ ∪ ⟨α2, [20, 30]⟩

Similarly, the violation epoch E⊖(v0:35, φ, 0) at b =

35 is the same as that at b = 30. Intuitively, the

epoch at b = 30 shows the cause of the violation of

v0:30; then since signal a < 0 in [30, 35], this seg-

ment is not considered as the cause of the violation,

so the epoch remains the same at b = 35. �

Definition 6 (Boolean causation monitor (BCauM)).

Let v0:b be a partial signal and φ be an STL speci-

fication. We denote by A the set of atomic propo-

sitions of φ. At each instant b, a Boolean cau-

sation (online) monitor BCauM returns a verdict in

{⊖,⊕,⊘} (called violation causation, satisfaction

causation and irrelevant), which is defined as fol-

lows,

M (v0:b, φ, τ) :=


⊖ if ∃α ∈ A. ⟨α, b⟩ ∈ E⊖(v0:b, φ, τ)

⊕ if ∃α ∈ A. ⟨α, b⟩ ∈ E⊕(v0:b, φ, τ)

⊘ otherwise

An instant b is called a violation/satisfaction cau-

sation instant if M (v0:b, φ, τ) returns ⊖/⊕, or an

irrelevant instant if M (v0:b, φ, τ) returns ⊘.
Intuitively, if the current instant b (with the re-

lated α) is included in the epoch (thus the signal

value at b is relevant to the violation/satisfaction of

φ), BCauM will report a violation/satisfaction cau-

sation (⊖/⊕); otherwise, it will report irrelevant

(⊘). Notably BCauM is non-monotonic, in that even

if it reports ⊖ or ⊕ at some instant b, it may still

report ⊘ after b. This feature allows BCauM to bring

more information, e.g., it can detect the end of a

violation episode and the start of a new one (i.e., it

solves the violation masking issue in §1); see Ex. 2.

Example 2. Based on the signal diagnostics in

Fig. 3, the Boolean causation monitor BCauM re-

ports the result shown as in Fig. 4.

Compared to the classic Boolean monitor in

v (speed)

10

5 10 15 20 25 30 35

a (acceleration)

0

5 10 15 20 25 30 35
-10

b

15

b
-5

6
3

classic quantitative online monitor ClaM

b

10

5 10 15 20 25 30 35

-10

5 10 15 20 25 30 35
?

classic Boolean online monitor

b

13

図 2: Classic monitor (ClaM) re-
sult for the STL specification:
2[0,100](v > 10 → 3[0,5](a < 0))

5 10 15 20 25 30 35

v (speed)

10

5 10 15 20 25 30

a (acceleration)

0

5 10 15 20 25 30

Boolean causation monitor

-10

b (time)

b

b

v (speed)

10

a (acceleration)

0

5 10 15 20 25 30 35
-10

b

b

⊘

5 10 15 20 25 30 35

b=30 b=35

The violation epochs (red parts) when b=30 and b=35

⊖

⊕

図 3: The violation epochs (the red parts) respectively when

b = 30 and b = 35

5 10 15 20 25 30 35

v (speed)

10

5 10 15 20 25 30

a (acceleration)

0

5 10 15 20 25 30

Boolean causation monitor BCauM

-10

b (time)

b

b

v (speed)

10

a (acceleration)

0

5 10 15 20 25 30 35
-10

b

b

⊘

5 10 15 20 25 30 35

b=30 b=35

The violation epochs (red parts) when b=30 and b=35

⊖

⊕

図 4: Boolean causation monitor (BCauM) result

Fig. 2, BCauM brings more information, in the sense

that it detects the end of the violation episode at

b = 30, by going from ⊖ to ⊘, when the signal a

becomes negative. �

Thm. 1 states the relation of BCauM with the clas-

sic Boolean online monitor.

Theorem 1. The Boolean causation monitor

BCauM in Def. 6 refines the classic Boolean on-

line monitor in Def. 3, in the following sense:

• M(v0:b, φ, τ) = ⊥ iff.
∨

t∈[0,b]

(M (v0:t, φ, τ) = ⊖)

• M(v0:b, φ, τ) = ⊤ iff.
∨

t∈[0,b]

(M (v0:t, φ, τ) = ⊕)

• M(v0:b, φ, τ) = ? iff.
∧

t∈[0,b]

(M (v0:t, φ, τ) = ⊘)

Proof. The proof is based on Defs. 5 and 6,

Lem. 1 about the monotonicity of classic STL on-

line monitors, and two extra lemmas in the full ver-

sion [39].

4 Quantitative Causation Online Mon-

itor

Although BCauM in §3 is able to solve the violation

masking issue, it still does not provide enough infor-

mation about the evolution of the system signals,

i.e., it does not solve the evolution masking issue

introduced in §1. To tackle this issue, we propose

a quantitative (online) causation monitor QCauM in

Def. 7, which is a quantitative extension of BCauM.

Given a partial signal v0:b, QCauM reports a viola-

tion causation distance [R]⊖ (v0:b, φ, τ) and a satis-

faction causation distance [R]⊕ (v0:b, φ, τ), which,

respectively, indicate how far the signal value at

the current instant b is from turning b into a vio-

lation causation instant and from turning b into a

satisfaction causation instant.

Definition 7 (Quantitative causation monitor

(QCauM)). Let v0:b be a partial signal, and φ be an

STL specification. At instant b, the quantitative

causation monitor QCauM returns a violation causa-

tion distance [R]⊖ (v0:b, φ, τ), as in Table 3a. and

a satisfaction causation distance [R]⊕ (v0:b, φ, τ),

as in Table 3b.

Intuitively, a violation causation distance [R]⊖ (v0:b, φ, τ)

is the spatial distance of the signal value v0:b(b), at

the current instant b, from turning b into a viola-

tion causation instant such that b is relevant to the

violation of φ (also applied to the satisfaction case

dually). It is computed inductively on the structure

表 3: Quantitative causation monitor

(a) The cases of computing [R]⊖ (v0:b, φ, τ)

[R]⊖ (v0:b, α, τ) :=

f(v0:b(τ)) if b = τ

Rαmax otherwise

[R]⊖ (v0:b,¬φ, τ) := −[R]⊕ (v0:b, φ, τ)

[R]⊖ (v0:b, φ1 ∧ φ2, τ) := min
(
[R]⊖ (v0:b, φ1, τ) , [R]⊖ (v0:b, φ2, τ)

)
[R]⊖ (v0:b, φ1 ∨ φ2, τ) := min

 max
(
[R]⊖ (v0:b, φ1, τ) , [R]U(v0:b, φ2, τ)

)
,

max
(
[R]U(v0:b, φ1, τ), [R]⊖ (v0:b, φ2, τ)

) 
[R]⊖ (v0:b,2Iφ, τ) := inf

t∈τ+I

(
[R]⊖ (v0:b, φ, t)

)
[R]⊖ (v0:b,3Iφ, τ) := inf

t∈τ+I

(
max

(
[R]⊖ (v0:b, φ, t) , [R]U(v0:b,3Iφ, τ)

))

[R]⊖ (v0:b, φ1 UI φ2, τ) := inf
t∈τ+I

max

 min

 inf
t′∈[τ,t)

[R]⊖
(
v0:b, φ1, t

′)
[R]⊖ (v0:b, φ2, t)


[R]U(v0:b, φ1 UI φ2, τ)




(b) The cases of computing [R]⊕ (v0:b, φ, τ)

[R]⊕ (v0:b, α, τ) :=

f(v0:b(τ)) if b = τ

Rαmin otherwise

[R]⊕ (v0:b,¬φ, τ) := −[R]⊖ (v0:b, φ, τ)

[R]⊕ (v0:b, φ1 ∧ φ2, τ) := max

 min
(
[R]⊕ (v0:b, φ1, τ) , [R]L(v0:b, φ2, τ)

)
,

min
(
[R]L(v0:b, φ1, τ), [R]⊕ (v0:b, φ2, τ)

) 
[R]⊕ (v0:b, φ1 ∨ φ2, τ) := max

(
[R]⊕ (v0:b, φ1, τ) , [R]⊕ (v0:b, φ2, τ)

)
[R]⊕ (v0:b,2Iφ, τ) := sup

t∈τ+I

(
min

(
[R]⊕ (v0:b, φ, t) , [R]L(v0:b,2Iφ, τ)

))
[R]⊕ (v0:b,3Iφ, τ) := sup

t∈τ+I

(
[R]⊕ (v0:b, φ, t)

)

[R]⊕ (v0:b, φ1 UI φ2, τ) := sup
t∈τ+I


max



min


sup

t′∈[τ,t)

[R]⊕
(
v0:b, φ1, t

′)
inf

t′∈[τ,t)
[R]L(v0:b, φ1, t

′)

[R]L(v0:b, φ2, t)


min

 inf
t′∈[τ,t)

[R]L(v0:b, φ1, t
′)

[R]⊕ (v0:b, φ2, t)






of φ:

• Case atomic propositions α: if b = τ (i.e., at

which instant α should be evaluated), then the

distance of b from being a violation causation

instant is f(v0:b(b)); otherwise, if b ̸= τ , de-

spite the value of f(v0:b(b)), b can never be a

violation causation instant, according to Def. 5,

because only f(v0:b(τ)) is relevant to the vio-

lation of α. Hence, the distance will be Rαmax;

• Case ¬φ: b is a violation causation instant

for ¬φ if b is a satisfaction causation in-

stant for φ, so [R]⊖ (v0:b,¬φ, τ) depends on

[R]⊕ (v0:b, φ, τ);

• Case φ1 ∧ φ2: b is a violation causa-

tion instant for φ1 ∧ φ2 if b is a vio-

lation causation instant for either φ1 or

φ2, so [R]⊖ (v0:b, φ1 ∧ φ2, τ) depends on

the minimum between [R]⊖ (v0:b, φ1, τ) and

[R]⊖ (v0:b, φ2, τ);

• Case φ1 ∨ φ2: b is a violation causation in-

stant for φ1 ∨ φ2 if, first, φ1 ∨ φ2 has been

violated at b, and second, b is the violation

causation instant for either φ1 or φ2. Hence,

[R]⊖ (v0:b, φ1 ∨ φ2, τ) depend on both the vi-

olation status (measured by [R]U(v0:b, φi, τ))

of one sub-formula and the violation causation

distance of the other sub-formula;

• Case 2Iφ: b is a violation causation instant for

2Iφ if b is the violation causation instant for

the sub-formula φ evaluated at any instant in

τ + I. So, [R]⊖ (v0:b,2Iφ, τ) depends on the

infimum of the violation causation distances re-

garding φ evaluated at the instants in τ + I;

• Case 3Iφ: b is a violation causation instant

for 3Iφ if, first, 3Iφ has been violated at b,

and second, b is a violation causation instant

for the sub-formula φ evaluated at any instant

in τ + I. So, [R]⊖ (v0:b,3Iφ, τ) depends on

both the violation status of 3Iφ (measured by

[R]U(v0:b,3Iφ, τ)) and the infimum of the vi-

olation causation distances of φ evaluated in

τ + I.

• Case φ1UI φ2: [R]⊖ (v0:b, φ1 UI φ2, τ) depends

on, first, the violation status of the whole for-

mula (measured by [R]U(v0:b, φ1UI φ2, τ)), and

also, the infimum of the violation causation dis-

tances regarding the evaluation of “φ1 holds

until φ2” at each instant in τ + I.

Similarly, we can also compute the satisfaction cau-

sation distance. We use Ex. 3 to illustrate the quan-

titative causation monitor for the signals in Ex. 1.

Example 3. Consider the quantitative causation

QCauM

[R]�

[R]⊕

図 5: Quantitative causation monitor (QCauM) re-

sult for Ex. 1

monitor for the signals in Ex. 1. At b = 30, the

violation causation distance is computed as in Ta-

ble 4.

Similarly, at b = 35, the violation causation dis-

tance [R]⊖ (v0:35, φ, 0) = 5. See the result of QCauM

shown in Fig. 5. Compared to ClaM in Fig. 2, it

is evident that QCauM provides much more informa-

tion about the system evolution, e.g., it can report

that, in the interval [15, 20], the system satisfies the

specification “more”, as the speed decreases. �

By using the violation and satisfaction causation

distances reported by QCauM jointly, we can infer

the verdict of BCauM, as indicated by Thm. 2.

Theorem 2. The quantitative causation monitor

QCauM in Def. 7 refines the Boolean causation mon-

itor BCauM in Def. 6, in the sense that:

• if [R]⊖ (v0:b, φ, τ) < 0, it implies M (v0:b, φ, τ) =

⊖;
• if [R]⊕ (v0:b, φ, τ) > 0, it implies M (v0:b, φ, τ) =

⊕;
• if [R]⊖ (v0:b, φ, τ) > 0 and [R]⊕ (v0:b, φ, τ) <

0, it implies M (v0:b, φ, τ) = ⊘.

Proof. The proof is generally based on mathemat-

ical induction. First, by Def. 7 and Def. 5, it is

straightforward that Thm. 2 holds for the atomic

propositions.

Then, assuming that Thm. 2 holds for an arbi-

trary formula φ, we prove that Thm. 2 also holds

for the composite formula φ′ constructed by apply-

ing STL operators to φ. The complete proof for all

three cases is shown in the full version [39].

表 4: The process of computing violation causation distance

[R]⊖(v0:30,φ,0)= inf
t∈[0,100]

[R]⊖
(
v0:30,φ

′,t
)

= inf
t∈[0,100]

min

 max
(
[R]⊖(v0:30,φ1,t),[R]U(v0:30,φ2,t)

)
,

max
(
[R]U(v0:30,φ1,t),[R]⊖(v0:30,φ2,t)

) 

= inf
t∈[0,100]

min


max

(
−[R]⊕(v0:30,α1,t), sup

t′∈t+[0,5]

[R]U(v0:30,α2,t
′)

)

max

−[R]L(v0:30,α1,t),max

 [R]U(v0:30,φ2,t),

inf
t′∈t+[0,5]

[R]⊖
(
v0:30,α2,t

′)





=max

(
−[R]L(v0:30,α1,25),[R]U(v0:30,φ2,25), inf

t′∈[25,30]
[R]⊖

(
v0:30,α2,t

′))
=max(−3,−3,−5)=−3.

As an instance, we show the proof for the first

case with φ′ = φ1 ∨ φ2, i.e., we prove that

[R]⊖ (v0:b, φ1 ∨ φ2, τ) < 0 implies M (v0:b, φ1 ∨
φ2, τ) = ⊖.

[R]⊖ (v0:b, φ1 ∨ φ2, τ) < 0

⇒max
(
[R]⊖ (v0:b, φ1, τ) , [R]U(v0:b, φ2, τ)

)
< 0

⇒[R]⊖ (v0:b, φ1, τ) < 0

⇒M (v0:b, φ1, τ) = ⊖
⇒E⊖(v0:b, φ1 ∨ φ2, τ) ⊇ E⊖(v0:b, φ1, τ)

⇒∃α. ⟨α, b⟩ ∈ E⊖(v0:b, φ1 ∨ φ2, τ)

⇒M (v0:b, φ1 ∨ φ2, τ) = ⊖

The relation between the quantitative causation

monitor QCauM and the Boolean causation monitor

BCauM, disclosed by Thm. 2, can be visualized by

the comparison between Fig. 5 and Fig. 4. Indeed,

when the violation causation distance reported by

QCauM is negative in Fig. 5, BCauM reports ⊖ in

Fig. 4.

Next, we present Thm. 3, which states the re-

lation between the quantitative causation monitor

QCauM and the classic quantitative monitor ClaM.

Theorem 3. The quantitative causation monitor

QCauM in Def. 7 refines the classic quantitative on-

line monitor ClaM in Def. 4, in the sense that,

the monitoring results of ClaM can be reconstructed

from the results of QCauM, as follows:

[R]U(v0:b, φ, τ) = inf
t∈[0,b]

[R]⊖ (v0:t, φ, τ) (1)

[R]L(v0:b, φ, τ) = sup
t∈[0,b]

[R]⊕ (v0:t, φ, τ) (2)

Proof. The proof is generally based on mathemat-

ical induction. First, by Def. 7 and Def. 4, it is

straightforward that Thm. 3 holds for the atomic

propositions.

Then, we make the global assumption that

Thm. 3 holds for an arbitrary formula φ, i.e.,

both the two cases inft∈[0,b] [R]⊖ (v0:t, φ, τ) =

[R]U(v0:b, φ, τ) and supt∈[0,b] [R]⊕ (v0:t, φ, τ) =

[R]L(v0:b, φ, τ) hold. Based on this assumption, we

prove that Thm. 3 also holds for the composite for-

mula φ′ constructed by applying STL operators to

φ.

As an instance, we prove inft∈[0,b] [R]⊖ (v0:t, φ
′, τ) =

[R]U(v0:b, φ
′, τ) with φ′ = φ1 ∨ φ2 as follows. The

complete proof is presented in the full version [39].

• First, if b = τ , it holds that:

inf
t∈[0,b]

[R]⊖(v0:t,φ1∨φ2,τ)=[R]⊖(v0:τ ,φ1∨φ2,τ)

=max
(
[R]U(v0:τ ,φ1,τ),[R]U(v0:τ ,φ2,τ)

)
=[R]U(v0:b,φ1∨φ2,τ)

• Then, we make a local assumption that, given

an arbitrary b, it holds that:

inf
t∈[0,b]

[R]⊖ (v0:t, φ1 ∨ φ2, τ) = [R]U(v0:b, φ1∨φ2, τ)

We prove that, for b′ which is the next sam-

pling point to b, it holds that,
inf

t∈[0,b′]
[R]⊖(v0:t,φ1∨φ2,τ)

=min
(
[R]U(v0:b,φ1∨φ2,τ),[R]⊖(v0:b′ ,φ1∨φ2,τ)

)

=min


max

(
[R]U(v0:b,φ1,τ),[R]U(v0:b,φ2,τ)

)
,

max
(
[R]⊖(v0:b′ ,φ1,τ),[R]U(v0:b′ ,φ2,τ)

)
,

max
(
[R]U(v0:b′ ,φ1,τ),[R]⊖(v0:b′ ,φ2,τ)

)


=min


max

(
[R]U(v0:b,φ1,τ),[R]U(v0:b,φ2,τ)

)
,

max
(
[R]⊖(v0:b′ ,φ1,τ),[R]U(v0:b,φ2,τ)

)
,

max
(
[R]U(v0:b,φ1,τ),[R]⊖(v0:b′ ,φ2,τ)

)
,

max
(
[R]⊖(v0:b′ ,φ1,τ),[R]⊖(v0:b′ ,φ2,τ)

)


=max

 min
(
[R]U(v0:b,φ1,τ),[R]⊖(v0:b′ ,φ1,τ)

)
,

min
(
[R]U(v0:b,φ2,τ),[R]⊖(v0:b′ ,φ2,τ)

) 
=max

(
[R]U(v0:b′ ,φ1,τ),[R]U(v0:b′ ,φ2,τ)

)
=[R]U(v0:b′ ,φ1∨φ2,τ)

Thm. 3 shows that the result [R]U(v0:b, φ, τ) of

ClaM can be derived from the result of QCauM by ap-

plying inft∈[0,b] [R]⊖ (v0:b, φ, t). For instance, com-

paring the results of QCauM in Fig. 5 and the results

of ClaM in Fig. 2, we can find that the results in

Fig. 2 can be reconstructed by using the results in

Fig. 5.

(v, τ) |= φ M(v0:b, φ, τ) M (v0:b, φ, τ)

R(v, φ, τ)
[R]U(v0:b, φ, τ)

[R]L(v0:b, φ, τ)

[R]⊖(v0:b, φ, τ)

[R]⊕(v0:b, φ, τ)

Thm. 1

T
h
m
.
2

Thm. 3

図 6: Refinement among STL monitors

Remark 1. Fig. 6 shows the refinement relations

between the six STL monitoring approaches. The

left column lists the offline monitoring approaches

derived directly from the Boolean and quantitative

semantics of STL respectively. The middle column

shows the classic online monitoring approaches.

Our two causation monitors, namely BCauM and

QCauM, are given in the column on the right. Given

a pair (A,B) of the approaches, A ← B indicates

that the approach B refines the approach A, in the

sense that B can deliver more information than A,

and the information delivered by A can be derived

from the information delivered by B. It is clear that

the refinement relation in the figure ensures transi-

tivity. Note that blue arrows are contributed by this

paper. As shown by Fig. 6, the relation between

BCauM and QCauM is analogous to that between the

Boolean and quantitative semantics of STL.

5 Experimental Evaluation

We implemented a tool†3 for our two causation

monitors. It is built on the top of Breach [15], a

widely used tool for monitoring and testing of hy-

brid systems [18]. Being consistent with Breach,

the monitors target the output signals given by

Simulink models, as an additional block. Exper-

iments were executed on a MacOS machine, 1.4

GHz Quad-Core Intel Core-i5, 8 GB RAM, using

Breach v1.10.0.

5. 1 Experiment Setting

Benchmarks. We perform the experiments on the

following two benchmarks.

Abstract Fuel Control (AFC) is a powertrain con-

trol system from Toyota [27], which has been widely

used as a benchmark in the hybrid system commu-

nity [18–20]. The system outputs the air-to-fuel

ratio AF, and requires that the deviation of AF from

its reference value AFref should not be too large.

Specifically, we consider the following properties

from different perspectives:

• φAFC
1 := 2[10,50](|AF− AFref| < 0.1): the devi-

ation should always be small;

• φAFC
2 := 2[10,48.5]3[0,1.5] (|AF− AFref| < 0.08):

a large deviation should not last for too long

time;

• φAFC
3 := 2[10,48](|AF − AFref| > 0.08 →

†3 Zenodo [40].

3[0,2](|AF− AFref| < 0.08)): whenever the de-

viation is too large, it should recover to the

normal status soon.

Automatic transmission (AT) is a widely-used

benchmark [18–20], implementing the transmission

controller of an automotive system. It outputs the

gear, speed and RPM of the vehicle, which are re-

quired to satisfy this safety requirement:

• φAT
1 := 2[0,27](speed > 50 → 3[1,3](RPM <

3000)): whenever the speed is higher than 50,

the RPM should be below 3000 in three time

units.

Baseline and experimental design. In order

to assess our two proposed monitors (the Boolean

causation monitor BCauM in Def. 6, and the quanti-

tative causation monitor QCauM in Def. 7), we com-

pare them with two baseline monitors: the classic

quantitative robustness monitor ClaM (see Def. 4);

and the state-of-the-art approach monitor with re-

set ResM [41], that, once the signal violates the

specification, resets at that point and forgets the

previous partial signal.

Given a model and a specification, we generate

input signals by randomly sampling in the input

space and feed them to the model. The online out-

put signals are given as inputs to the monitors and

the monitoring results are collected. We generate

10 input signals for each model and specification.

To account for fluctuation of monitoring times in

different repetitions†4, for each signal, the exper-

iment has been executed 10 times, and we report

average results.

5. 2 Evaluation

Qualitative evaluation. We here show the type

of information provided by the different monitors.

†4 Note that only the monitoring time changes across

different repetitions; monitoring results are in-

stead always the same, as monitoring is determin-

istic for a given signal.

As an example, Fig. 7 reports, for two specifica-

tions of the two models, the system output signal

(in the top of the two sub-figures), and the moni-

toring results of the compared monitors. We notice

that signals of both models (top plots) violate the

corresponding specifications in multiple points. Let

us consider monitoring results of φAFC
1 ; similar ob-

servations apply to φAT
1 .

When using the ClaM, only the first violation

right after time 15 is detected (the upper bound

of robustness becomes negative); after that, the

upper bound remains constant, without reporting

that the system recovers from violation at around

time 17, and that the specification is violated again

four more times.

Instead, we notice that the monitor with reset

ResM is able to detect all the violations (as the up-

per bound becomes greater than 0 when the viola-

tion episode ends), but it does not properly report

the margin of robustness; indeed, during the viola-

tion episodes, it reports a constant value of around

−0.4 for the upper bound, but the system violates

the specification with different degrees of severity

in these intervals; in a similar way, when the speci-

fication is satisfied around after time 17, the upper

bound is just above 0, but actually the system sat-

isfies the specification with different margins. As a

consequence, ResM provides sharp changes of the ro-

bustness upper bound that do not faithfully reflect

the system evolution.

We notice that the Boolean causation monitor

BCauM only reports information about the viola-

tion episodes, but not on the degree of viola-

tion/satisfaction. Instead, the quantitative causa-

tion monitor QCauM is able to provide a very de-

tailed information, not only reporting all the vi-

olation episodes, but also properly characterizing

the degree with which the specification is violated

or satisfied. Indeed, in QCauM, the violation cau-

sation distance smoothly increases from violation

Signals AF and AFref

Classic monitor ClaM

Classic monitor with reset ResM
classic monitor with reset

0 5 10 15 20 25 30 35 40 45 50
14
16

alw_[10, 50](abs(AF[t]-AFref[t]) < 0.1)
AF
AFref

0 5 10 15 20 25 30 35 40 45 50
-0.5

0

0.5
Upper robustness
Lower robustness

0 5 10 15 20 25 30 35 40 45 50
14
16

alw_[10, 50](abs(AF[t]-AFref[t]) < 0.1)
AF
AFref

0 5 10 15 20 25 30 35 40 45 50
-0.5

0

0.5
Upper robustness
Lower robustness

0 5 10 15 20 25 30 35 40 45 50
14
16

alw_[10, 50](abs(AF[t]-AFref[t]) < 0.1)
AF
AFref

0 5 10 15 20 25 30 35 40 45 50
-0.5

0

0.5
Violation causation distance
Satisfaction causation distance

Quantitative causation monitor QCauM

0 5 10 15 20 25 30 35 40 45 50
14

16

alw_[10, 50](abs(AF[t]-AFref[t]) < 0.1)
AF
AFref

0 5 10 15 20 25 30 35 40 45 50
-0.5

0

0.5
Upper robustness
Lower robustness

0 5 10 15 20 25 30 35 40 45 50
14
16

alw_[10, 50](abs(AF[t]-AFref[t]) < 0.1)
AF
AFref

0 5 10 15 20 25 30 35 40 45 50

Boolean causation monitor verdict⊕

⊖

⊘

Boolean causation monitor BCauM

(a) Specification φAFC
1 and signal #4

Signals speed and RPM0 5 10 15 20 25 30
0

50
100

2000
4000

alw_[0,30](not(speed[t] > 50) or ev_[1,3](RPM[t] < 3000))
speed
RPM

0 5 10 15 20 25 30
-500

0

500
Upper robustness
Lower robustness

0 5 10 15 20 25 30
0

50
100

2000
4000

alw_[0,30](not(speed[t] > 50) or ev_[1,3](RPM[t] < 3000))

0 5 10 15 20 25 30
-500

0

500
Violation causation distance
Satisfaction causation distance

0 5 10 15 20 25 30
0

50
100

2000
4000

alw_[0,30](not(speed[t] > 50) or ev_[1,3](RPM[t] < 3000))
speed
RPM

0 5 10 15 20 25 30
-500

0

500 Upper robustness
Lower robustness

Classic monitor ClaM

Classic monitor with reset ResM

Quantitative causation monitor QCauM

0 5 10 15 20 25 30
0

50
100

2000
4000

alw_[0,30](not(speed[t] > 50) or ev_[1,3](RPM[t] < 3000))
speed
RPM

0 5 10 15 20 25 30
-1

0

1
Boolean causation monitor verdict

⊕

⊖

⊘

Boolean causation monitor BCauM

0 5 10 15 20 25 30
0

50

100

2000

4000
alw_[0,30](not(speed[t] > 50) or ev_[1,3](RPM[t] < 3000))

speed
RPM

0 5 10 15 20 25 30
-500

0

500
Upper robustness
Lower robustness

(b) Specification φAT
1 and signal #8

図 7: Examples of the information provided by the different monitors

to satisfaction, so faithfully reflecting the system

evolution.

Quantitative assessment of monitoring time.

We discuss the computation cost of doing the mon-

itoring.

In Table 5, we observe that, for all the monitors,

the monitor ing time is much lower than the total

time (system execution + monitoring). It shows

that, for this type of systems, the monitoring over-

head is negligible. Still, we compare the execution

costs for the different monitors. Table 6 reports the

monitoring times of all the monitors for each spec-

ification and each signal. Moreover, it reports the

percentage difference between the quantitative cau-

sation monitor QCauM (the most informative one)

and the other monitors.

We first observe that ResM and BCauM have, for

the same specification, high variance of the mon-

itoring times across different signals. ClaM and

QCauM, instead, provide very consistent monitoring

times. This is confirmed by the standard devia-

tion results in Table 5. The consistent monitoring

cost of QCauM is a good property, as the designers

of the monitor can precisely forecast how long the

monitoring will take, and design the overall system

accordingly.

We observe that QCauM is negligibly slower than

ClaM for φAFC
1 and φAFC

2 , and at most twice slower

for the other two specifications. This additional

monitoring cost is acceptable, given the additional

information provided by QCauM. Compared to ResM,

QCauM is usually slower (at most around the dou-

ble); also in this case, as QCauM provides more in-

formation than ResM, the cost is acceptable.

Compared to the Boolean causation monitor

BCauM, QCauM is usually faster, as it does not have

to collect epochs, which is a costly operation. How-

ever, we observe that it is slower in φAFC
3 , because,

表 5: Experimental results – Average (avg.) and standard deviation (stdv.) of monitoring and simulation

times (ms)

ClaM ResM BCauM QCauM

monitor total monitor total monitor total monitor total

avg. stdv. avg. stdv. avg. stdv. avg. stdv. avg. stdv. avg. stdv. avg. stdv. avg. stdv.

φAFC
1 14.6 0.1 982.8 3.5 8.8 2.4 981.3 6.7 36.9 5.4 1009.7 16.5 15.1 0.1 981.9 4.4

φAFC
2 26.8 0.2 998.5 9.0 20.2 5.2 988.0 9.9 50.4 22.4 1023.9 25.1 27.4 0.2 999.5 8.2

φAFC
3 42.0 0.3 1016.5 8.9 45.5 4.8 1016.9 7.5 48.4 6.2 1021.2 7.9 81.0 1.2 1060.1 5.3

φAT
1 16.7 0.2 966.0 2.6 24.0 17.0 980.4 24.2 96.1 82.6 1065.2 93.4 31.2 0.6 985.0 7.5

表 6: Experimental results of the four monitoring approaches – Monitoring time (ms) – ∆A = (QCauM−A)/A

φAFC
1 ClaM ResM BCauM QCauM

QCauM stat. (%)

∆ClaM ∆ResM ∆BCauM

#1 14.5 8.2 37.4 15.2 4.8 85.4 -59.4

#2 14.5 8.1 39.9 15.0 3.4 85.2 -62.4

#3 14.8 8.0 38.2 15.0 1.4 87.5 -60.7

#4 14.7 8.5 38.8 15.3 4.1 80.0 -60.6

#5 14.6 8.0 37.3 14.9 2.1 86.3 -60.1

#6 14.6 8.2 37.6 15.1 3.4 84.1 -59.8

#7 14.6 15.5 21.6 15.0 2.7 -3.2 -30.6

#8 14.7 7.9 39.5 15.0 2.0 89.9 -62.0

#9 14.6 7.8 39.9 15.1 3.4 93.6 -62.2

#10 14.5 8.0 38.4 15.1 4.1 88.8 -60.7

φAFC
2 ClaM ResM BCauM QCauM

QCauM stat. (%)

∆ClaM ∆ResM ∆BCauM

#1 26.8 19.8 45.9 27.4 2.2 38.4 -40.3

#2 27.1 27.3 27.6 27.8 2.6 1.8 0.7

#3 26.6 26.2 30.0 27.5 3.4 5.0 -8.3

#4 26.6 14.2 107.2 27.0 1.5 90.1 -74.8

#5 26.7 15.8 50.9 27.3 2.2 72.8 -46.4

#6 26.6 15.8 56.4 27.2 2.3 72.2 -51.8

#7 26.8 25.4 33.5 27.5 2.6 8.3 -17.9

#8 26.9 17.0 51.9 27.4 1.9 61.2 -47.2

#9 27.1 25.1 50.9 27.6 1.8 10.0 -45.8

#10 26.7 15.8 50.1 27.3 2.2 72.8 -45.5

φAFC
3 ClaM ResM BCauM QCauM

QCauM stat. (%)

∆ClaM ∆ResM ∆BCauM

#1 42.1 49.2 49.1 81.2 92.9 65.0 65.4

#2 42.5 42.2 42.2 82.1 93.2 94.5 94.5

#3 41.8 48.8 48.8 81.5 95.0 67.0 67.0

#4 42.0 34.9 63.4 78.8 87.6 125.8 24.3

#5 41.7 48.9 48.7 79.6 90.9 62.8 63.4

#6 41.7 48.5 48.7 79.7 91.1 64.3 63.7

#7 42.3 42.7 42.5 81.9 93.6 91.8 92.7

#8 42.1 42.2 42.0 81.6 93.8 93.4 94.3

#9 42.3 49.1 49.3 82.6 95.3 68.2 67.5

#10 41.6 48.6 49.1 80.8 94.2 66.3 64.6

φAT
1 ClaM ResM BCauM QCauM

QCauM stat. (%)

∆ClaM ∆ResM ∆BCauM

#1 16.9 30.7 29.6 32.1 89.9 4.6 8.4

#2 16.7 17.4 17.4 31.9 91.0 83.3 83.3

#3 16.7 16.8 253.4 31.0 85.6 84.5 -87.8

#4 16.9 69.7 70.2 31.8 88.2 -54.4 -54.7

#5 16.8 19.6 135.9 31.0 84.5 58.2 -77.2

#6 16.5 26.5 200.5 30.2 83.0 14.0 -84.9

#7 16.6 14.6 37.9 31.0 86.7 112.3 -18.2

#8 16.8 16.4 143.8 31.4 86.9 91.5 -78.2

#9 16.3 13.9 38.6 31.0 90.2 123.0 -19.7

#10 16.5 14.2 33.2 30.9 87.3 117.6 -6.9

in this specification, most of the signals do not vi-

olate it (and so also BCauM does not collect epochs

in this case).

To conclude, QCauM is a monitor able to pro-

vide much more information that exiting monitors,

with an acceptable overhead in terms of monitoring

time.

6 Related Work

Monitoring of STL. Monitoring can be per-

formed either offline or online. Offline monitor-

ing [16, 30, 33] targets complete traces and returns

either true or false. In contrast, online monitor-

ing deals with the partial traces, and thus a three-

valued semantics was introduced for LTL monitor-

ing [7, 8], and in further for MTL and STL quali-

tative online monitoring [24, 31], to handle the sit-

uation where neither of the conclusiveness can be

made. In usual, the quantitative online monitoring

provides a quantitative value or a robust satisfac-

tion interval [12–14, 25, 26]. Based on them, sev-

eral tools have been developed, e.g., AMT [32, 33],

Breach [15], S-Taliro [1], etc. We refer to the sur-

vey [3] for comprehensive introduction. Recently,

in [35], Qin and Deshmukh propose clairvoyant

monitoring to forecast future signal values and give

probabilistic bounds on the specification validity.

In [2], an online monitoring is proposed for per-

ception systems with Spatio-temporal Perception

Logic [23].

Monotonicity issue. However, most of these

works do not handle the monotonicity issue stated

in this paper. In [10], Cimatti et al. propose an

assumption-based monitoring framework for LTL.

It takes the user expertise into account and al-

lows the monitor resettable, in the sense that it can

restart from any discrete time point. In [37], a re-

covery feature is introduced in their online moni-

tor [25]. However, the technique is an application-

specific approach, rather than a general framework.

In [41], a reset mechanism is proposed for STL on-

line monitor. However, as experimentally evalu-

ated in §5, it essentially provides a solution for the

Boolean semantics and still holds monotonicity be-

tween two resetting points.

Signal diagnostics. Signal diagnostics [5, 22, 32]

is originally used in an offline manner, for the pur-

pose of fault localization and system debugging.

In [22], the authors propose an approach to au-

tomatically address the single evaluations (namely,

epochs) that account for the satisfaction/violation

of an STL specification, for a complete trace. This

information can be further used as a reference for

detecting the root cause of the bugs in the CPS

systems [5,6,32]. The online version of signal diag-

nostics, which is the basis of our Boolean causation

monitor, is introduced in [41]. However, we show in

§5 that the monitor based on this technique is of-

ten costly, and not able to deliver the quantitative

runtime information compared to the quantitative

causation monitor.

7 Conclusion and Future Work

In this paper, we propose a new way of doing

STL monitoring based on causation that is able to

provide more information than classic monitoring

based on STL robustness. Concretely, we propose

two causation monitors, namely BCauM and QCauM.

In particular, BCauM intuitively explains the concept

of “causation” monitoring, and thus paves the path

to QCauM that is more practically valuable. We fur-

ther prove the relation between the proposed cau-

sation monitors and the classic ones.

As future work, we plan to improve the efficiency

the monitoring, by avoiding some unnecessary com-

putations for some instants. Moreover, we plan to

apply it to the monitoring of real-world systems.

Acknowledgments

Z. Zhang is supported by JSPS KAKENHI Grant

No. JP23K16865 and No. JP23H03372. J. An,

P. Arcaini, and I. Hasuo are supported by ER-

ATO HASUO Metamathematics for Systems De-

sign Project (No. JPMJER1603), JST, Fund-

ing Reference number 10.13039/501100009024 ER-

ATO. P.Arcaini is also supported by Engineerable

AI Techniques for Practical Applications of High-

Quality Machine Learning-based Systems Project

(Grant Number JPMJMI20B8), JST-Mirai.

参 考 文 献
[1] Annpureddy, Y., Liu, C., Fainekos, G., Sankara-

narayanan, S.: S-TaLiRo: A tool for temporal logic

falsification for hybrid systems. In: TACAS 2011.

LNCS, vol. 6605, pp. 254–257. Springer (2011).

https://doi.org/10.1007/978-3-642-19835-9 21

[2] Balakrishnan, A., Deshmukh, J., Hoxha, B., Ya-

maguchi, T., Fainekos, G.: PerceMon: Online moni-

toring for perception systems. In: RV 2021. pp. 297–

308. Springer (2021). https://doi.org/10.1007/978-

3-030-88494-9 18

[3] Bartocci, E., Deshmukh, J.V., Donzé, A.,

Fainekos, G., Maler, O., Nickovic, D., Sankara-

narayanan, S.: Specification-based monitoring of

cyber-physical systems: A survey on theory, tools

and applications. In: Lectures on Runtime Ver-

ification - Introductory and Advanced Topics,

LNCS, vol. 10457, pp. 135–175. Springer (2018).

https://doi.org/10.1007/978-3-319-75632-5 5

[4] Bartocci, E., Falcone, Y. (eds.): Lectures

on Runtime Verification - Introductory and Ad-

vanced Topics, LNCS, vol. 10457. Springer (2018).

https://doi.org/10.1007/978-3-319-75632-5

[5] Bartocci, E., Ferrère, T., Manjunath, N.,

Ničković, D.: Localizing faults in Simulink/Stateflow

models with STL. In: HSCC 2018. pp. 197–206.

ACM (2018). https://doi.org/10.1145/3178126.3178131

[6] Bartocci, E., Manjunath, N., Mariani, L.,

Mateis, C., Ničković, D.: CPSDebug: Automatic

failure explanation in CPS models. International

Journal on Software Tools for Technology Transfer

23(5), 1–14 (2021). https://doi.org/10.1007/s10009-

020-00599-4

[7] Bauer, A., Leucker, M., Schallhart, C.: Moni-

toring of real-time properties. In: FSTTCS 2006.

LNCS, vol. 4337, pp. 260–272. Springer (2006).

https://doi.org/10.1007/11944836 25

[8] Bauer, A., Leucker, M., Schallhart, C.: Runtime

verification for LTL and TLTL. ACM Transactions

on Software Engineering and Methodology 20(4), 1–

64 (2011). https://doi.org/10.1145/2000799.2000800

[9] Ciccone, L., Dagnino, F., Ferrando, A.: Ain’t

no stopping us monitoring now. arXiv preprint

arXiv:2211.11544 (2022)

[10] Cimatti, A., Tian, C., Tonetta, S.: Assumption-

based runtime verification with partial observability

and resets. In: RV 2019. LNCS, vol. 11757, pp. 165–

184. Springer (2019). https://doi.org/10.1007/978-

3-030-32079-9 10

[11] Decker, N., Leucker, M., Thoma, D.: Impar-

tiality and anticipation for monitoring of visibly

context-free properties. In: Legay, A., Bensalem, S.

(eds.) Runtime Verification. pp. 183–200. Springer

Berlin Heidelberg, Berlin, Heidelberg (2013)

[12] Deshmukh, J.V., Donzé, A., Ghosh, S., Jin,

X., Juniwal, G., Seshia, S.A.: Robust on-

line monitoring of signal temporal logic. Formal

Methods in System Design 51(1), 5–30 (2017).

https://doi.org/10.1007/s10703-017-0286-7

[13] Dokhanchi, A., Hoxha, B., Fainekos, G.:

On-line monitoring for temporal logic robust-

ness. In: RV 2014. LNCS, vol. 8734, pp. 231–

246. Springer (2014). https://doi.org/10.1007/978-

3-319-11164-3 19

[14] Dokhanchi, A., Hoxha, B., Fainekos, G.: Met-

ric interval temporal logic specification elicitation

and debugging. In: MEMOCODE 2015. pp. 70–79.

IEEE (2015). https://doi.org/10.1109/MEMCOD.2015.7340472

[15] Donzé, A.: Breach, A toolbox for verifi-

cation and parameter synthesis of hybrid sys-

tems. In: CAV 2010. LNCS, vol. 6174, pp. 167–

170. Springer (2010). https://doi.org/10.1007/978-

3-642-14295-6 17

[16] Donzé, A., Ferrère, T., Maler, O.: Effi-

cient robust monitoring for STL. In: CAV 2013.

LNCS, vol. 8044, pp. 264–279. Springer (2013).

https://doi.org/10.1007/978-3-642-39799-8 19

[17] Donzé, A., Maler, O.: Robust satisfaction

of temporal logic over real-valued signals. In:

FORMATS 2010. LNCS, vol. 6246, pp. 92–

106. Springer (2010). https://doi.org/10.1007/978-

3-642-15297-9 9

[18] Ernst, G., Arcaini, P., Bennani, I., Chandratre,

A., Donzé, A., Fainekos, G., Frehse, G., Gaaloul,

K., Inoue, J., Khandait, T., Mathesen, L., Menghi,

C., Pedrielli, G., Pouzet, M., Waga, M., Yaghoubi,

S., Yamagata, Y., Zhang, Z.: ARCH-COMP 2021

category report: Falsification with validation of re-

sults. In: Frehse, G., Althoff, M. (eds.) 8th Interna-

tional Workshop on Applied Verification of Continu-

ous and Hybrid Systems (ARCH21). EPiC Series in

Computing, vol. 80, pp. 133–152. EasyChair (2021).

https://doi.org/10.29007/xwl1

[19] Ernst, G., Arcaini, P., Bennani, I., Donzé, A.,

Fainekos, G., Frehse, G., Mathesen, L., Menghi,

C., Pedrielli, G., Pouzet, M., Yaghoubi, S., Ya-

magata, Y., Zhang, Z.: ARCH-COMP 2020 cat-

egory report: Falsification. In: 7th International

Workshop on Applied Verification of Continuous

and Hybrid Systems (ARCH20). EPiC Series in

Computing, vol. 74, pp. 140–152. EasyChair (2020).

https://doi.org/10.29007/trr1

[20] Ernst, G., Arcaini, P., Fainekos, G., Formica,

F., Inoue, J., Khandait, T., Mahboob, M.M.,

Menghi, C., Pedrielli, G., Waga, M., Yamagata,

Y., Zhang, Z.: ARCH-COMP 2022 category re-

port: Falsification with ubounded resources. In:

Frehse, G., Althoff, M., Schoitsch, E., Guiochet,

J. (eds.) Proceedings of 9th International Work-

shop on Applied Verification of Continuous and

Hybrid Systems (ARCH22). EPiC Series in Com-

puting, vol. 90, pp. 204–221. EasyChair (2022).

https://doi.org/10.29007/fhnk

[21] Fainekos, G.E., Pappas, G.J.: Robustness of

temporal logic specifications for continuous-time

signals. Theoretical Computer Science 410(42),

4262–4291 (2009). https://doi.org/10.1016/j.tcs.2009.06.021

[22] Ferrère, T., Maler, O., Nickovic, D.: Trace diag-

nostics using temporal implicants. In: ATVA 2015.

LNCS, vol. 9364, pp. 241–258. Springer (2015).

https://doi.org/10.1007/978-3-319-24953-7 20

[23] Hekmatnejad, M., Hoxha, B., Deshmukh, J.V.,

Yang, Y., Fainekos, G.: Formalizing and evaluating

requirements of perception systems for automated

vehicles using spatio-temporal perception logic

(2022). https://doi.org/10.48550/arxiv.2206.14372

[24] Ho, H.M., Ouaknine, J., Worrell, J.: Online

monitoring of metric temporal logic. In: RV 2014.

LNCS, vol. 8734, pp. 178–192. Springer (2014).

https://doi.org/10.1007/978-3-319-11164-3 15

[25] Jakšić, S., Bartocci, E., Grosu, R., Kloib-

hofer, R., Nguyen, T., Ničkovié, D.: From

signal temporal logic to FPGA monitors. In:

MEMOCODE 2015. pp. 218–227. IEEE (2015).

https://doi.org/10.1109/MEMCOD.2015.7340489

[26] Jakšić, S., Bartocci, E., Grosu, R., Nguyen, T.,

Ničković, D.: Quantitative monitoring of STL with

edit distance. Formal methods in system design 53,

83–112 (2018). https://doi.org/10.1007/s10703-018-

0319-x

[27] Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K.,

Butts, K.: Powertrain control verification bench-

mark. In: HSCC 2014. pp. 253–262. ACM (2014).

https://doi.org/10.1145/2562059.2562140

[28] Koymans, R.: Specifying real-time properties

with metric temporal logic. Real Time Syst. 2(4),

255–299 (1990). https://doi.org/10.1007/BF01995674

[29] Leucker, M., Schallhart, C.: A brief account

of runtime verification. The Journal of Logic and

Algebraic Programming 78(5), 293–303 (2009).

https://doi.org/10.1016/j.jlap.2008.08.004

[30] Maler, O., Ničković, D.: Monitoring tempo-

ral properties of continuous signals. In: FOR-

MATS/FTRTFT 2004, LNCS, vol. 3253, pp. 152–

166. Springer (2004). https://doi.org/10.1007/978-

3-540-30206-3 12

[31] Maler, O., Ničković, D.: Monitoring prop-

erties of analog and mixed-signal circuits. Int.

J. Softw. Tools Technol. Transf. 15(3), 247–268

(2013). https://doi.org/10.1007/s10009-012-0247-9

[32] Ničković, D., Lebeltel, O., Maler, O., Ferrère,

T., Ulus, D.: AMT 2.0: qualitative and quanti-

tative trace analysis with extended signal tempo-

ral logic. International Journal on Software Tools

for Technology Transfer 22(6), 741–758 (2020).

https://doi.org/10.1007/s10009-020-00582-z

[33] Ničković, D., Maler, O.: AMT: A property-

based monitoring tool for analog systems. In:

FORMATS 2007. LNCS, vol. 4763, pp. 304–

319. Springer (2007). https://doi.org/10.1007/978-

3-540-75454-1 22

[34] Pnueli, A.: The temporal logic of pro-

grams. In: FOCS 1977. pp. 46–57. IEEE (1977).

https://doi.org/10.1109/SFCS.1977.32

[35] Qin, X., Deshmukh, J.V.: Clairvoyant mon-

itoring for signal temporal logic. In: FOR-

MATS 2020. Lecture Notes in Computer Sci-

ence, vol. 12288, pp. 178–195. Springer (2020).

https://doi.org/10.1007/978-3-030-57628-8 11

[36] Sánchez, C., Schneider, G., Ahrendt, W., Bar-

tocci, E., Bianculli, D., Colombo, C., Falcone, Y.,

Francalanza, A., Krstić, S., Lourenço, J.M., et al.:

A survey of challenges for runtime verification from

advanced application domains (beyond software).

Formal Methods in System Design 54(3), 279–335

(2019). https://doi.org/10.1007/s10703-019-00337-

w

[37] Selyunin, K., Jaksic, S., Nguyen, T., Reidl,

C., Hafner, U., Bartocci, E., Nickovic, D., Grosu,
R.: Runtime monitoring with recovery of the

SENT communication protocol. In: CAV 2017.

LNCS, vol. 10426, pp. 336–355. Springer (2017).

https://doi.org/10.1007/978-3-319-63387-9 17

[38] Zhang, Z., An, J., Arcaini, P., Hasuo, I.: On-

line causation monitoring of signal temporal logic.

In: Enea, C., Lal, A. (eds.) Computer Aided

Verification. pp. 62–84. Springer Nature Switzer-

land, Cham (2023). https://doi.org/10.1007/978-3-

031-37706-8 4

[39] Zhang, Z., An, J., Arcaini, P., Hasuo, I.: Online

causation monitoring of signal temporal logic. arXiv

(2023). https://doi.org/10.48550/arXiv.2305.17754

[40] Zhang, Z., An, J., Arcaini, P., Hasuo, I.: On-

line Causation Monitoring of Signal Temporal Logic

(Artifact). Zenodo (2023), https://doi.org/10.

5281/zenodo.7923888

[41] Zhang, Z., Arcaini, P., Xie, X.: Online reset

for signal temporal logic monitoring. IEEE Trans-

actions on Computer-Aided Design of Integrated

Circuits and Systems 41(11), 4421–4432 (2022).

https://doi.org/10.1109/TCAD.2022.3197693

