
日本ソフトウェア科学会第 40 回大会 (2023 年度) 講演論文集

Higher-Order Weakest Precondition

Transformers via a CPS Transformation

(Extended Abstract)

Satoshi Kura
Weakest preconditions are a useful notion for program verification. Category-theoretic generalisations are

studied to define weakest preconditions for various computational effects and various properties. However,

those categorical frameworks often lack a syntactic aspect, namely, how to compute generic weakest precon-

ditions syntactically. In this paper, we provide a general framework for syntactic computation of weakest

preconditions. Specifically, we prove that a CPS transformation is a syntactic counterpart of semantic weak-

est preconditions in a general situation. We also provide several instances of our framework to show that

our framework can cover various problems of program verification. Notably, we can reproduce results from

two existing papers as instances of our framework, and we can also apply our framework to a new problem.

Weakest Preconditions and Program

Verification

Weakest preconditions [4] are useful notion for

program verification and enable us to generate ver-

ification conditions (or logical constraints) from a

given pair of a program and a specification. Since

such verification conditions are logical formulas

that do not depend on the syntax of programming

languages, checking the validity of verification con-

ditions is usually easier than the original verifica-

tion problem. Based on this idea, program verifica-

tion based on weakest preconditions is implemented

in e.g. Why3 [5] and Boogie [3].

Generic Weakest Preconditions

There are many variations of weakest precon-

ditions such as total and partial correctness for

programs that may not terminate, may and must

correctness for nondeterministic programs, and the

weakest pre-expectation [8] and the expected run-

time transformer [6] for probabilistic programs.

Category-theoretic generalisation of weakest pre-

CPS 変換による高階最弱事前条件変換子 (Extended

Abstract)

内藏 理史, 国立情報学研究所, National Institute of

Informatics.

conditions is also studied since it is well-known

that computational effects such as non-termination,

nondeterminism, and probabilistic nondeterminis-

tic are uniformly captured by monads. For exam-

ple, the work [1] gives a general framework using

monads, which subsumes various weakest precon-

ditions including the examples above.

Since monads give semantics of functional pro-

grams with computational effects, the work [1] nat-

urally gives rise to a semantic definition of weak-

est preconditions for such programs. However, the

semantic definition is not convenient for program

verification because we often want to syntactically

compute a formula that represents the weakest pre-

condition. Syntactic computation of weakest pre-

conditions has been mainly studied for imperative

programs, and there are no existing work on syntac-

tic and generic weakest preconditions for functional

programs with computational effects.

Our Results

In this talk, we consider functional programs

with computational effects and recursion, and prove

that generic weakest preconditions can be syntac-

tically obtained by a CPS transformation if we use

a postcondition as a continuation. We define a

CPS transformation as a syntactic translation from

a source programming language to a target lan-



guage of higher-order modal fixed-point logic where

a type of proposition Prop is used as an answer

type. Given a well-typed term x : τ ⊢ M : ρ, the

CPS transformation (−)γ gives a well-typed for-

mula x : τγ ⊢ Mγ : (ργ → Prop) → Prop. As-

sume τγ = τ and ργ = ρ, which is the case if τ and

ρ do not contain function types. Now, the type of

continuation ρ → Prop is the same as the type of

postcondition, and Mγ can be regarded as a func-

tion that takes a postcondition of type ρ → Prop

and returns a precondition of type τ → Prop. Our

main theorem states that Mγ actually gives a syn-

tactic counterpart of the weakest precondition de-

fined in [1].

Our main theorem enables syntactic computa-

tions of weakest preconditions. Here, we empha-

size that we can apply our main theorem to pro-

grams with computational effects such as nonde-

terministic or probabilistic programs because our

framework inherits the generality of [1]. We have

several instances of our main theorem listed below.

• We have instances for total and partial cor-

rectness. This is the simplest situation since

we do not consider any computational effect

except for non-termination caused by infinite

loops.

• We reproduce two existing works [7] [2] of pro-

gram verification using our main theorem. The

first one [7] is about problems of trace proper-

ties and may-/must-reachability. Given a non-

deterministic program with output operations,

these problems ask whether any output satis-

fies a certain property. The second one [2] is

about expected cost analyses. Given a proba-

bilistic program with a notion of cost, the aim

is to estimate the expected cost of the program.

• Our main theorem not only generalises two ex-

isting works but can also be used to obtain new

instances. For example, we extend expected

cost analyses [2] by (1) allowing continuous dis-

tributions and (2) enabling analysis of higher

moments of cost, which leads to a new instance

of cost moment analysis.

These instances exemplify the potential of our gen-

eral framework for the study of program verifica-

tion.
References

[1] Aguirre, A. and Katsumata, S.-y.: Weakest Pre-

conditions in Fibrations, Electronic Notes in Theo-

retical Computer Science, Vol. 352(2020), pp. 5–27.

[2] Avanzini, M., Barthe, G., and Dal Lago, U.:

On Continuation-Passing Transformations and Ex-

pected Cost Analysis, Proceedings of the ACM on

Programming Languages, Vol. 5, No. ICFP(2021),

pp. 1–30.

[3] Barnett, M., Chang, B.-Y. E., DeLine, R., Ja-

cobs, B., and Leino, K. R. M.: Boogie: A Mod-

ular Reusable Verifier for Object-Oriented Pro-

grams, Formal Methods for Components and Ob-

jects, Vol. 4111, Springer Berlin Heidelberg, Berlin,

Heidelberg, 2006, pp. 364–387.

[4] Dijkstra, E. W.: Guarded Commands, Nondeter-

minacy and Formal Derivation of Programs, Com-

munications of the ACM, Vol. 18, No. 8(1975),

pp. 453–457.

[5] Filliâtre, J.-C. and Paskevich, A.: Why3 —

Where Programs Meet Provers, Programming Lan-

guages and Systems, Vol. 7792, Springer Berlin Hei-

delberg, Berlin, Heidelberg, 2013, pp. 125–128.

[6] Kaminski, B. L., Katoen, J.-P., Matheja, C.,

and Olmedo, F.: Weakest Precondition Reasoning

for Expected Runtimes of Randomized Algorithms,

Journal of the ACM, Vol. 65, No. 5(2018), pp. 1–68.

[7] Kobayashi, N., Tsukada, T., and Watanabe,

K.: Higher-Order Program Verification via HFL

Model Checking, Programming Languages and Sys-

tems, Vol. 10801, Springer International Publishing,

Cham, 2018, pp. 711–738.

[8] McIver, A. and Morgan, C.: Partial Correct-

ness for Probabilistic Demonic Programs, Theoret-

ical Computer Science, Vol. 266, No. 1-2(2001),

pp. 513–541.


