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Exploiting Adjoints in Property Directed

Reachability Analysis

Mayuko Kori, Flavio Ascari, Filippo Bonchi, Roberto Bruni,

Roberta Gori, and Ichiro Hasuo
We formulate, in lattice-theoretic terms, two novel algorithms inspired by Bradley’s property directed

reachability algorithm. For finding safe invariants or counterexamples, the first algorithm exploits over-

approximations of both forward and backward transition relations, expressed abstractly by the notion of

adjoints. In the absence of adjoints, one can use the second algorithm, which exploits lower sets and their

principals. As a notable example of application, we consider quantitative reachability problems for Markov

Decision Processes.

1 Introduction

Property directed reachability analysis (PDR)

refers to a class of verification algorithms for solv-

ing safety problems of transition systems [3] [6]. Its

essence consists of 1) interleaving the construction

of an inductive invariant (a positive chain) with

that of a counterexample (a negative sequence), and

2) making the two sequences interact, with one nar-

rowing down the search space for the other.

PDR algorithms have shown impressive perfor-

mance both in hardware and software verification,

leading to active research [15] [16] [8] [9] going far be-

yond its original scope. For instance, an abstract

domain [4] capturing the over-approximation ex-

ploited by PDR has been recently introduced in [7],

while PrIC3 [2] extended PDR for quantitative ver-

ification of probabilistic systems.

To uncover the abstract principles behind PDR
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and its extensions, Kori et al. proposed LT-

PDR [11], a generalisation of PDR in terms of

lattice/category theory. LT-PDR can be instan-

tiated using domain-specific heuristics to create

effective algorithms for different kinds of systems

such as Kripke structures, Markov Decision Pro-

cesses (MDPs), and Markov reward models. How-

ever, the theory in [11] does not offer guidance on

devising concrete heuristics.

1. 1 Adjoints in PDR.

Our approach shares the same vision of LT-PDR,

but we identify different principles: adjunctions are

the core of our toolset.
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An adjunction f ⊣ g is one of

the central concepts in category

theory [13]. It is prevalent in various fields of

computer science, too, such as abstract interpre-

tation [4] and functional programming [12]. Our

use of adjoints in this work comes in the following

two flavours.

• (forward-backward adjoint) f describes the

forward semantics of a transition system, while

g is the backward one, where we typically have

A = C.



• (abstraction-concretization adjoint) C is a

concrete semantic domain, and A is an ab-

stract one, much like in abstract interpretation.

An adjoint enables us to convert a fixed-point

problem in C to that in A.

1. 2 Our Algorithms.

The problem we address is the standard lattice

theoretical formulation of safety problems, namely

whether the least fixed point of a continuous map

b over a complete lattice (L,⊑) is below a given el-

ement p ∈ L. In symbols µb ⊑? p. We present two

algorithms.
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The first one, named AdjointPDR,

assumes to have an element i ∈ L

and two adjoints f ⊣ g : L → L,

representing respectively initial states, forward se-

mantics and backward semantics (see right) such

that b(x) = f(x) ⊔ i for all x ∈ L. Under this as-

sumption, we have the following equivalences (they

follow from the Knaster-Tarski theorem):

µb ⊑ p ⇔ µ(f ⊔ i) ⊑ p ⇔ i ⊑ ν(g ⊓ p),

where µ(f ⊔ i) and ν(g⊓p) are, by the Kleene theo-

rem, the limits of the initial and final chains illus-

trated below.

⊥ ⊑ i ⊑ f(i) ⊔ i ⊑ · · · · · · ⊑ g(p) ⊓ p ⊑ p ⊑ ⊤
As positive chain, PDR exploits an over-

approximation of the initial chain: it is made

greater to accelerate convergence; still it has to be

below p.

The distinguishing feature of AdjointPDR is to

take as a negative sequence (that is a sequential

construction of potential counterexamples) an over-

approximation of the final chain. This crucially dif-

fers from the negative sequence of LT-PDR, namely

an under-approximation of the computed positive

chain.

We prove that AdjointPDR is sound and does not

loop but since, the problem µb ⊑? p is not always

decidable, we cannot prove termination. Never-

theless, AdjointPDR allows for a formal theory of

heuristics that are essential when instantiating the

algorithm to concrete problems. The theory pre-

scribes the choices to obtain the boundary execu-

tions, using initial and final chains; it thus identifies

a class of heuristics guaranteeing termination when

answers are negative.

AdjointPDR’s assumption of a forward-backward

adjoint f ⊣ g, however, does not hold very often, es-

pecially in probabilistic settings. Our second algo-

rithm AdjointPDR↓ circumvents this problem by ex-

tending the lattice for the negative sequence, from

L to the lattice L↓ of lower sets in L.
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Specifically, by us-

ing the second form

of adjoints, namely

an abstraction-concretization

pair, the problem µb ⊑? p in L can be translated to

an equivalent problem on b↓ in L↓, for which an ad-

joint b↓ ⊣ b↓r is guaranteed. This allows one to run

AdjointPDR in the lattice L↓. We then notice that

the search for a positive chain can be conveniently

restricted to principals in L↓, which have represen-

tatives in L. The resulting algorithm, using L for

positive chains and L↓ for negative sequences, is

AdjointPDR↓.

The use of lower sets for the negative sequence is

a key advantage. It not only avoids the restrictive

assumption on forward-backward adjoints f ⊣ g,

but also enables a more thorough search for coun-

terexamples. AdjointPDR↓ can simulate step-by-

step LT-PDR, while the reverse is not possible due

to a single negative sequence in AdjointPDR↓ po-

tentially representing multiple or even all negative

sequences in LT-PDR.

1. 3 Concrete Instances.

Our lattice-theoretic algorithms yield many con-

crete instances: the original IC3/PDR [3] [6] as well

as Reverse PDR [14] are instances of AdjointPDR



with L being the powerset of the state space; since

LT-PDR can be simulated by AdjointPDR↓, the lat-

ter generalizes all instances in [11].

As a notable instance, we apply AdjointPDR↓

to MDPs, specifically to decide if the maximum

reachability probability [1] is below a given thresh-

old. Here the lattice L = [0, 1]S is that of fuzzy

predicates over the state space S. Our theory pro-

vides guidance to devise two heuristics, for which

we prove negative termination. We present its im-

plementation in Haskell, and its experimental eval-

uation, where comparison is made against exist-

ing probabilistic PDR algorithms (PrIC3 [2], LT-

PDR [11]) and a non-PDR one (Storm [5]). The

performance of AdjointPDR↓ is encouraging—it

supports the potential of PDR algorithms in prob-

abilistic model checking. The experiments also in-

dicate the importance of having a variety of heuris-

tics, and thus the value of our adjoint framework

that helps coming up with those.

Additionally, we found that abstraction features

of Haskell allows us to code lattice-theoretic algo-

rithms almost literally (∼100 lines). Implement-

ing a few heuristics takes another ∼240 lines. This

way, we found that mathematical abstraction can

directly help easing implementation effort.

See [10] for further details.
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