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Active Learning of Symbolic Mealy Machines

Kengo Irie Masaki Waga Kohei Suenaga

Active automata learning is a learning framework for finite state machines using an oracle that correctly

answers queries. Symbolic finite automata are one of the finite state machines in which trasntitions are

labeled with predicates to operate over an infinite set. Λ∗ is an active automata learning algorithm for

symbolic finite automata. In this paper, we propose an active automata learning algorithm for finite state

machines with an infinite set of inputs and a finite set of outputs. First, we give the formal definition of

symbolic Mealy machines so that Mealy machines can work on an infinite set of inputs. Next, we give the

extension of Λ∗ for learning symbolic Mealy machines, called Λ∗
M . Then, we prove minimality of conjectured

symbolic Mealy machines.

1 Introduction

The field of active automata learning has signif-

icantly impacted a wide area of software engineer-

ing. For example, learning techniques have been

used to test the system [14], and extract automata

from recurrent neural networks [19] [13].

L* [1] is one of the active automata learning al-

gorithms. L* is an algorithm for learning deter-

ministic finite automata with the minimum number

of states. Variants of L* can be adapted to learn

Mealy machines [12] [16].

Symbolic finite automata are finite state au-

tomata in which the alphabet is given by a Boolean

algebra that may have an infinite domain, and tran-

sitions are labeled with predicates over such alge-

bra.

Λ∗ [7] is an algorithm for learning symbolic finite
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automata. Λ∗ is an extenstion of L* and has an

additional step for generalizing the concrete tran-

sition labels to predicates.

In this paper, we propose the algorithm to learn

finite state machines with an infinite set of inputs

and a finite set of outputs.

First, we give the formal definition of symbolic

Mealy machines so that Mealy machines can oper-

ate over an infinite set. We then define the mini-

mality of symbolic Mealy machines and prove that

minimal symbolic Mealy machines have the mini-

mum number of states.

Next, we give an extension of Λ∗ for learning

symbolic Mealy machines, called Λ∗
M . Finally, We

prove that a symbolic Mealy machine learned by

Λ∗
M has the minimum number of states.

In summary, our contributions are:

• the formal definition of symbolic Mealy ma-

chines

• the learning algorithm for symbolic Mealy ma-

chines

• a proof of minimality of learned machines



1. 1 Related work

There are various active automata learning algo-

rithms. L* [1] is the first learning algorithm of DFA

using membership queries and equivalence queries.

Rivest & Shapire [15] is a variant of L*. L* and

Rivest & Shapire are observation table based algo-

rithms. While TTT [9] is a tree-like data structure

based algorithm for DFA.

Active automata learning is also adapted to

Mealy machines. Niese [12] is the first adaptation

of L* for Mealy machines. Shabaz & Groz [16] im-

proves an algorithm for Mealy machines to provide

a new method for processing counterexamples.

Symbolic finite automata is a extension of classi-

cal automata and transitions are labeled by predi-

cates so that it can operate over infinite input al-

phabets. Determinization and completion of sym-

bolic finite automata are studied in [6]. Minimiza-

tion of symbolic finite automata is also studied

in [6].

There are multiple learning algorithms for sym-

bolic finite automata. Mens et al. [11] proposed

an adaptation of L* for symbolic finite automata

for totally ordered alphabet such as N. Argyros

et al. [3] proposed Shabaz & Groz [16] based algo-

rithm for symbolic finite automata using guardgen

algorithm which generalizes concrete symbols into

predicates. Drews et al. [7] presented Λ∗ which

uses a partitioning function to get predicates for

transition. They also defined the learnability of an

underlying Boolean algebra and classified Boolean

algebras with respect to complexity of learning. Ar-

gyros et al. [2] presented MAT*. MAT* is based

on TTT [9] and takes as input a learning algorithm

for predicates. And it uses a learning algorithm to

infer the predicates appearing on the transitions in

the target automaton. Fisman et al. [8] studied the

learnability of symbolic finite automata under the

paradigm of identification in the limit using poly-

nomial time and data. They provide a necessary

condition for the identification of symbolic finite

automata in the limit using polynomial time and

data and a sufficient condition for efficient learn-

ability of symbolic finite automata.

Symbolic finite transducers [18] are extensions

of classical transducers by allowing transitions to

carry predicates and functions. There are also sev-

eral learning algorithms [4] [3] [10].

In addition, there are learning algorithms for

variants of symbolic finite automata such as resid-

ual symbolic automata [5] and symbolic weighted

finite automata [17].

2 Preliminaries

For a set Σ, the set of words over Σ is Σ∗. The

empty word of length 0 is denoted by ϵ. We also

denote Σ+ = Σ∗ \ {ϵ}.

2. 1 Symbolic Finite Automaton

In symbolic automata, transitions carry predi-

cates over a decidable Boolean algebra.

Definition 1 (Boolean Algebra). An effec-

tive Boolean algebra A is a tuple A =

(D,Ψ, J K,⊥,⊤,∨,∧,¬) where D is a recursively

enumerable set of domain elements; Ψ is a recur-

sively enumerable set of predicates closed under the

Boolean connectives, with ⊥,⊤ ∈ Ψ; J K: Ψ → 2Dis

a denotation function such that (i) J⊥K = ∅, (ii)J⊤K = D, (iii) for all φ,ψ ∈ Φ, Jφ∨ψK = JφK∪JψK,Jφ ∧ ψK = JφK ∩ JψK, J¬φK = D \ JφK. For φ ∈ Ψ,

we write IsSat(φ) when JφK ̸= ∅ and say that φ is

satisfiable. A is decidable if IsSat is decidable.

Definition 2 (Symbolic Finite Automaton). A

symbolic finite automaton M is a tuple M =

(A, Q, qinit , F, δ) where A is the Boolean algebra,

Q is the non-empty finite set of states, qinit is

the initial state, F ⊆ Q is the set of final states,

δ ⊆ Q×ΨA ×Q is the transition relation.

We denote a domain of elements of A by DA.

Characters are elements of DA, and words are finite



sequences of characters, namely elements of D∗
A. A

move ρ = (q1, φ, q2) ∈ δ, also denoted by q1
φ−→ q2,

is a transition from the source state q1 to the tar-

get state q2, where φ is the guard or predicate of

the move. For a character a ∈ DA, an a-move of

M, denoted q1
a−→ q2 is a move q1

φ−→ q2 such that

a ∈ JφK.
A symbolic finite automaton M is deterministic

if for all (q, φ1, q1), (q, φ2, q2) ∈ δ, if q1 ̸= q2 thenJφ1 ∧ φ2K = ∅. A symbolic finite automaton M
is complete if for all q ∈ Q,

∨
(q,φi,qi)∈δ φi = ⊤.

Throughout the paper, we assume all symbolic fi-

nite automata are deterministic and complete.

Given a symbolic finite automaton M =

(A, Q, qinit , F, δ) and a state q ∈ Q, we say a

word w = a1a2 . . . ak is accepted at state q if, for

1 ≤ i ≤ k, there exist moves qi−1
ai−→ qi such that

q0 = q and qk ∈ F . We refer to the set of words

accepted at q as the language accepted at q, de-

noted as Lq(M); the language accepted by M is

L(M) = Lqinit (M).

2. 2 Λ∗ Algorithm

Λ∗ [7] learns a symbolic finite automaton using

two kinds of queries. A membership query submits

an input word w to an oracle and obtains whether

w is accepted by an automaton. An equivalence

query submits a hypothesis automaton to an ora-

cle and obtains whether a hypothesis recognizes the

language of the target; if not it gets a counterex-

ample.

Λ∗ uses the data structure called the observation

table.

Definition 3 (Observation Table). An observation

table T for a symbolic finite automaton M is a tuple

(Σ, S,R,E, f) where Σ is a potentially infinite set

called the alphabet; S,R,E ⊆ Σ∗ are finite subsets

of words; f : (S ∪R) ·E → {0, 1} is a classification

function such that for a word w · e ∈ (S ∪ R) · E,

f(w · e) = 1 if w · e ∈ L(M), and f(w · e) = 0 if

w · e /∈ L(M). Additionally, (i) S and R are dis-

joint, (ii) S ∪R is prefix-closed and ϵ ∈ S, (iii) for

all s ∈ S, there exists a character a ∈ Σ such that

s · a ∈ S ∪R, (iv) E is suffix-closed.

In order for Λ∗ to infer an automaton without

contradiction, an observation table must satisfy the

condition cohesive. We use the notation row(w) for

w ∈ S ∪ R to denote the vector indexed by e ∈ E

of f(w · e).
Definition 4 (closed). An observation table is

closed if for each r ∈ R there exists s ∈ S such

that row(s) = row(r).

Definition 5 (consistent). An observation table is

consistent if for all w1, w2 ∈ S ∪ R, if a ∈ Σ and

w1 · a,w2 · a ∈ S ∪R and row(w1) = row(w2), then

row(w1 · a) = row(w2 · a).
Definition 6 (evidence-closed). An observation

table is evidence-closed if for all e ∈ E and s ∈ S,

s · e ∈ S ∪R.
Definition 7 (reduced). An observation table is

reduced if for all s1, s2 ∈ S, row(s1) ̸= row(s2).

An observation table is cohesive if it is closed,

reduced, consistent, and evidence-closed. If an ob-

servation table is cohesive, then we can construct

an evidence automaton in which transitions are still

labeled with concrete symbols.

Given a cohesive observation table we produce

a evidence automaton A = (Σ, Q, qinit , F, δ) as fol-

lows: For each s ∈ S, we introduce a state qs ∈ Q.

qinit is assigned to qϵ. The final state set F contains

all qs such that s ∈ S and f(s) = 1. Since the ob-

servation table is closed and reduced, there exists

a function g : S ∪R → S such that g(w) = s if and

only if row(w) = row(s). This function allows us

to define the transition relation: if w ·a ∈ S ∪R for

w ∈ Σ∗ and a ∈ Σ, then (qg(w), a, qg(w·a)) ∈ δ.

To construct a symbolic finite automaton from an

evidence automaton, we use a partitioning function

to generalize concrete characters to predicates.

Definition 8 (Partitioning Function). A par-



titioning function for a Boolean algebra A =

(D,Ψ, J K,⊥,⊤,∨,∧,¬) is a function P : (2D)∗ →
Ψ∗ that takes as input a list LD = l1 . . . lk of

disjoint sets of elements in D, and returns a list

LΨ = φ1 . . . φk of predicates in Ψ such that

-
∨

φi∈LΨ
φi,j = ⊤

- φi ∧ φj = ⊥ for all φi, φj ∈ LΨ with i ̸= j

- for each li ∈ LD corresponding to φi ∈ LΨ all

a ∈ li are such that a ∈ JφiK
Given an evidence automaton A = (Σ, Q, qinit , F,

δ), a Boolean algebra A with domain Σ, and an ap-

propriate partitioning function P , we build a sym-

bolic finite automaton M = (A, Q, qinit , F, δM ) us-

ing a given Boolean algebra and that exact config-

uration of the state space Q, the initial state qinit ,

and the final states F of A. All that remains is the

construction of the transition relation δM .

For each q ∈ Q, we perform the following. We

gather all transitions of the evidence automaton out

of q into a set δq = {(q, a, q′) ∈ δ} and construct

a list LΣ indexed over the states qi ∈ Q, where

each set in LΣ is li = {a | (q, a, qi) ∈ δq}. We

apply the partitioning function to get the list of

separating predicates LΨA = P (LΣ) which is also

indexed over qi ∈ Q, and add (q, φi, qi) to δM for

each φi ∈ LΨA .

We are now ready to describe the algorithm: Ini-

tially, we start with the observation table S = {ϵ},
R = {a} and E = {ϵ}(a is an arbitrary character

from Σ). f is initially undefined. The knowledge of

the table is grown using the operations fill, close,

make-consistent and evidence-close.

The operation fill asks a membership query for all

w ·e ∈ (S∪R) ·E for which f is undefined and then

adds those results to f ; in this way, it ensures f is

defined over the entire domain of the observation

table.

The operation close checks the existence of an

r ∈ R such that for all s ∈ S, row(r) ̸= row(s). If

such an r exists, r is moved from R to S, and r · a

is added to R for some arbitrary a ∈ Σ.

The operation evidence-close ensures for all s ∈ S

and e ∈ E that s · e ∈ S ∪ R by adding to R all

s · e that are not. It also adds to R any necessary

prefixes so that S ∪R is prefix-closed.

The operation make-consistent operates as fol-

lows: if there exist w1, w2 ∈ S∪R and w1 ·a,w2 ·a ∈
S∪R for some a ∈ Σ such that row(w1) = row(w2)

but row(w1 · a) ̸= row(w2 · a), then w1 and w2 ac-

tually lead to different states; using the e ∈ E such

that f(w1 · a · e) ̸= f(w2 · a · e), it is clear a · e
thus differentiates those states. Accordingly, a · e is
added to E.

Upon receiving a counterexample t ∈ Σ∗ from an

equivalence query sent to the oracle, all prefixes of

t are added to R except those already present in S.

Algorithm 1 shows an overview of the learning

algorithm: after the table is initialized, the opera-

tions make-consistent, evidence-close and close are

applied until the table is cohesive. A symbolic finite

automaton MH is then conjectured from the table,

and an equivalence query is performed: if MH is

equivalent to the target, then the algorithm termi-

nates. Otherwise, a counterexample is produced

and processed, and the procedure repeats.

3 Symbolic Mealy Machine

We now define symbolic Mealy machines. Intu-

itively, a symbolic Mealy machine is a Mealy ma-

chine over a symbolic alphabet, where edge labels

are replaced by predicates. The predicates must

form an effective Boolean algebra.

Definition 9 (Symbolic Mealy Machine). A

symbolic Mealy machine M is a tuple M =

(A, Q, qinit , O, δ) where A is a Boolean algebra, Q

is the non-empty finite set of states, qinit is the

initial state, O is the finite set of output symbols,

δ ⊆ Q×ΨA×Q×O is the transition-output relation.

Here, we define various properties of a symbolic

Mealy machine.



Algorithm 1 Active Learning of symbolic finite

automata
1: Initialize S = {ϵ}, R = {a} and E = {ϵ} ( a is

an arbitrary character from Σ)

2: Construct the initial table T = (Σ, S,R,E, f)

3: while true do

4: while T is not cohesive do

5: if T is not closed then

6: Apply close to T

7: else if T is not consistent then

8: Apply make-consistent to T

9: else if T is not evidence-closed then

10: Apply evidence-close to T

11: end if

12: end while

13: Construct the evidence automaton Me
H

14: Construct the symbolic finite automaton

MH

15: Send MH to the equivalence oracle

16: if the equivalence oracle returns a coun-

terexample c then

17: Add all prefixes of c to R

18: else

19: return MH

20: end if

21: end while

Definition 10 (deterministic). A symbolic Mealy

machine M is deterministic if, for all (q, φ1, q1, o1),

(q, φ2, q2, o2) ∈ δ, if q1 ̸= q2 or o1 ̸= o2 thenJφ1 ∧ φ2K = ∅.
Definition 11 (complete). A symbolic Mealy

machine M is complete if, for all q ∈ Q,∨
(q,φi,qi,oi)∈δ φi = ⊤.

Definition 12. q ∈ Q is reachable if there exists

w ∈ D∗
A such that q = δ1(qinit , w).

Definition 13 (clean). A symbolic Mealy machine

M is clean if for all (q, φ, q1, o) ∈ δ, q is reachable

from qinit and JφK ̸= ∅.
Definition 14 (normalized). A symbolic Mealy

machine M is normalized if for all p, q ∈ Q and

for all o ∈ O, there is at most one φ satisfying

(p, φ, q, o) ∈ δ.

Throughout the paper we assume all symbolic

Mealy machines are deterministic and complete.

For the special case in which M is deterministic

and complete, we define the transition function δ1:

Q×DA → Q and output function δ2: Q×DA → O

such that for all q ∈ Q and a ∈ DA, δ1(q, a) = q′

and δ2(q, a) = o where q′ and o is the state and

output such that (q, φ, q′, o) ∈ δ and a ∈ JφK.
We denote the straightforward inductive exten-

sions δ1: Q×D∗
A → Q and δ2: Q×D+

A → O such

that δ1(q, ϵ) = q and δ1(q, wa) = δ1(δ1(q, w), a)

where a ∈ DA and w ∈ D∗
A; δ2(q, aw) =

δ2(δ1(q, a), w) where a ∈ DA and w ∈ D+
A.

Additionally, we define the function M: Q ×
D+

A → O such that M(q, w) = δ2(q, w).

Finally, we define minimality of symbolic Mealy

machines. And we prove that a minimal symbolic

Mealy machine has the minimum number of states.

Definition 15 (minimal). A symbolic Mealy ma-

chine M is minimal if all states of M are reachable

and M is deterministic, complete, clean, normal-

ized, and for all p, q ∈ Q if p ̸= q then there exists

w ∈ D+
A such that M(p, w) ̸= M(q, w).

Before proving the main theorem, we prove the

following lemma.

Lemma 1. For all x ∈ D∗
A and w ∈ D+

A,

M(qinit , x · w) = M(δ1(qinit , x), w).

Proof. We prove this lemma by induction on the

length of x. For length 0, it is obviously true, as

M(qinit , w) = M(δ1(qinit , ϵ), w)

Let us assume that for all x ∈ D∗
A of length at

most k ≥ 0, and for all w ∈ D+
A M(qinit , x · w) =

M(δ1(qinit , x), w). Let x′ ∈ D∗
A with length k + 1.

Then we can find a decomposition of x′ such that



x · a for some word of length k and a ∈ DA.

M(δ1(qinit , x
′), w) = M(δ1(qinit , x · a), w)

= δ2(δ1(qinit , x · a), w)
= δ2(δ1(δ1(qinit , x), a), w)

= δ2(δ1(qinit , x), a · w)
= M(δ1(qinit , x), a · w)
= M(qinit , x · a · w)
= M(qinit , x

′ · w)

We are now ready to prove that a minimal sym-

bolic Mealy machine has the minimum number of

states.

Theorem 1. A minimal symbolic Mealy machine

M has the minimum number of states.

Proof. Let M = (A, Q, qinit , O, δ) be a mini-

mal symbolic Mealy machine. Suppose there

exists another symbolic Mealy machine M′ =

(A, Q′, q′init , O, δ
′) with for all w ∈ D∗

A M(qinit , w) =

M′(q′init , w) and |Q| > |Q′|.
Let Q = {q1, q2, . . . , qn}. Since all states of M are

reachable, for each i = 1, 2, . . . , n, we can choose

a word xi ∈ D∗
A such that qi = δ1(qinit , xi). Let

q′i = δ′1(q
′
init , xi), from the pigeonhole principle

there exists an integer 1 ≤ i < j ≤ n such that

q′i = q′j . For all w ∈ D+
A, we have

M′(q′i, w) = M′(q′j , w) ⇐⇒
M′(δ′1(q

′
init , xi), w) = M′(δ′1(q

′
init , xj), w) ⇐⇒

M′(q′init , xi · w) = M′(q′init , xj · w) ⇐⇒
M(qinit , xi · w) = M(qinit , xj · w) ⇐⇒

M(δ1(qinit , xi), w) = M(δ1(qinit , xj), w) ⇐⇒
M(qi, w) = M(qj , w)

This contradicts that M is minimal. Hence, |Q| ≤
|Q′|. Therefore M has the minimum number of

states.

4 Learning Algorithm

Here we present our algorithm, Λ∗
M , for learning

symbolic Mealy machines. The premise is that the

symbolic Mealy machine to be learned called the

target is hidden in a black box, so knowledge of it

comes from some oracle that admits two kinds of

queries: output queries that ask input from DA and

obtain output from the machine, and equivalence

queries that ask whether a conjectured machine is

equivalent to the target―if not, a counterexample

is provided.

4. 1 Observation Table

The observation table consists of rows of prefixes

and columns of suffixes. Each entry keeps informa-

tion on the output of the word formed by concate-

nating the prefix and suffix, which is obtained by

output queries.

Definition 16 (Observation Table). An observa-

tion table T for a symbolic Mealy machine M is

a tuple (Σ, S,R,ΣE , E, f) where Σ is a potentially

infinite set called the alphabet; S,R,E ⊂ Σ∗ are fi-

nite subsets of words and ΣE ⊂ Σ is a finite subset

of characters; f : (S ∪ R) × (ΣE ∪ E) → O is a

finite function such that f(w, e) = M(qinit , w · e).
Additionally, (i) S and R are disjoint, (ii) S ∪ R

is prefix-closed and ϵ ∈ S, (iii) for all s ∈ S, there

exists a character a ∈ Σ such that s ·a ∈ S∪R, (iv)
ΣE ∪ E is suffix-closed, (v) ΣE is non-empty.

Λ∗
M manipulates the observation table and even-

tually conjectures a symbolic Mealy machine. For

this to happen, the table must first satisfy certain

properties. We call such a table cohesive.

Definition 17 (closed). An observation table is

closed if for each r ∈ R there exists s ∈ S such that

row(s) = row(r).

Definition 18 (consistent). An observation table

is consistent if for all w1, w2 ∈ S ∪R, if a ∈ Σ and

w1 · a,w2 · a ∈ S ∪R and row(w1) = row(w2), then

row(w1 · a) = row(w2 · a).
Definition 19 (evidence-closed). An observation

table is evidence-closed if for all e ∈ (ΣE ∪ E) and

s ∈ S, s · e ∈ S ∪R.
Definition 20 (reduced). An observation table is



reduced if for all s1, s2 ∈ S, row(s1) ̸= row(s2).

Definition 21 (output-closed). An observation ta-

ble is output-closed if for all w ∈ Σ∗, for all a ∈ Σ

if w · a ∈ S ∪R then a ∈ ΣE.

An observation table is cohesive if it is closed,

reduced, consistent, evidence-closed, and output-

closed.

Output-closed is a new condition. Output-closed

guarantees that all characters appearing in an ob-

servation table are in ΣE . In other words, ΣE will

record all characters that appear in an observation

table.

If an observation table is cohesive, then it admits

the construction of an evidence Mealy machine. We

build an evidence Mealy machine as follows.

Definition 22 (Evidence Mealy Machine). Let

(Σ, S,R,ΣE , E, f) be a cohesive observation table,

then the evidence Mealy machine conjecture Me =

(ΣE , Q, qinit , O, δ
e) is defined, where

• Q = {row(s) | s ∈ S}
• qinit = row(ϵ)

• (row(w), a, row(w · a), f(w, a)) ∈ δe (w ∈ S,

a ∈ ΣE)

Here, we should make sure that an evidence

Mealy machine is deterministic and complete.

Lemma 2. Given a cohesive observation Table

T = (Σ, S,R,ΣE , E, f), if Me = (ΣE , Q, qinit , O, δ
e)

is the evidence mealy machine construction of T ,

then Me is deterministic and complete.

Proof. For all w ∈ S, for all a ∈ ΣE , there

exists exactly one transition (row(w), a, row(w ·
a), f(w, a)) ∈ δe. So Me is obviously determin-

istic. Since T is evidence-closed, for all w ∈ S, for

all a ∈ ΣE , w ·a ∈ S∪R holds. So row(w ·a) always
exists and Me is obviously complete.

Since Me is deterministic and complete, we de-

fine the transition function δe1: Q × ΣE → Q and

output function δe2: Q× ΣE → O such that for all

q ∈ Q and a ∈ ΣE , δ
e
1(q, a) = q′ and δe2(q, a) = o

where q′ and o is the state and output such that

(q, a, q′, o) ∈ δe.

We denote the straightforward inductive exten-

sions δe1: Q × Σ∗
E → Q and δe2: Q × Σ+

E → O such

that δe1(q, ϵ) = q and δe1(q, wa) = δe1(δ
e
1(q, w), a)

where a ∈ ΣE and w ∈ Σ∗
E ; δe2(q, aw) =

δe2(δ
e
1(q, a), w) where a ∈ ΣE and w ∈ Σ+

E .

Additionally, we define the function Me: Q ×
Σ+

E → O such that Me(q, w) = δe2(q, w).

From here, we prove that an evidence mealy ma-

chine is minimal. First, we check the simple lemma

that holds from the conditions of an observation

table.

Lemma 3. Given a cohesive observation Table

T = (Σ, S,R,ΣE , E, f), if Me = (ΣE , Q, qinit , O, δ
e)

is the evidence mealy machine construction of T ,

for all s1, s2 ∈ S ∪ R, for all a ∈ ΣE if row(s1) =

row(s2) then row(s1 ·a) = row(s2 ·a) and f(s1, a) =
f(s2, a).

Proof. For all s1, s2 ∈ S ∪ R such that row(s1) =

row(s2),then since the observation Table T is con-

sistent, for all a ∈ ΣE row(s1 · a) = row(s2 · a)
holds. Since the table is closed, there exists s ∈ S

such that row(s) = row(s1 · a) = row(s2 · a) holds.
ΣE is non-empty. So for all s1, s2 ∈ S ∪ R such

that row(s1) = row(s2), then for all a ∈ ΣE

f(s1, a) = f(s2, a).

Next, we prove the following lemma which states

that all words in S of the observation table are rep-

resented by valid states in Me.

Lemma 4. Given a cohesive observation Table

T = (Σ, S,R,ΣE , E, f), if Me = (ΣE , Q, qinit , O, δ
e)

is the evidence mealy machine construction of T ,

for all s ∈ S ∪R δe1(qinit , s) = row(s).

Proof. We prove this lemma by induction on the

length of s. For length 0, it is obviously true, as

σ(qinit , ϵ) = qinit = row(ϵ).

Let us assume that for all s ∈ S ∪ R of length



at most k ≥ 0, δ1(qinit , s) = row(s) holds. Let

t ∈ S ∪ R with length k + 1. Then we can find a

decomposition of t such that s · a for some word

of length k and a ∈ ΣE . In fact, s is in S ∪ R.

Since T is closed, there exists s1 ∈ S such that

row(s) = row(s1). We can conclude

δe1(qinit , t) = δe1(qinit , s · a)
= δe1(δ

e
1(qinit , s), a)

= δe1(row(s), a) induction hypothesis

= δe1(row(s1), a)

= row(s1 · a)
= row(s · a)
= row(t)

Note that from Lemma 4 we can also conclude

that all states in Me are reachable from within the

initial state.

Finally, we prove evidence compatibility which

denotes intuitively that every entry of the observa-

tion table can be observed in the evidence Mealy

machine.

Theorem 2 (Evidence compatibility). Given a co-

hesive observation Table T = (Σ, S,R,ΣE , E, f),

if Me = (ΣE , Q, qinit , O, δ
e) is the evidence mealy

machine construction of T , then for all s ∈ S ∪ R,
for all e ∈ ΣE ∪ E, δe2(δ

e
1(qinit , s), e) = f(s, e).

Proof. We prove this theorem by induction on the

length of e. We begin with length 1, a ∈ ΣE .

Since T is closed, there exists s1 ∈ S such that

row(s) = row(s1).

δe2(δ
e
1(qinit , s), a) = δe2(row(s), a) Lemma 4

= δe2(row(s1), a)

= f(s1, a)

= f(s, a)

Suppose that δe2(δ
e
1(qinit , s), e) = f(s, e) holds for all

e ∈ ΣE ∪E of length at k ≥ 1, and let e′ ∈ ΣE ∪E
be of length k + 1. Then we can find a decomposi-

tion of e′ such that e′ = a · e where e is of length k

and a ∈ ΣE . In fact e is in ΣE ∪E because ΣE ∪E
is suffix-closed.

Let furthermore s ∈ S ∪R. Since T is closed, there

exists a word s1 ∈ S such that row(s) = row(s1).

Thus we can conclude

δe2(δ
e
1(qinit , s), e

′) = δe2(δ
e
1(qinit , s), a · e)

= δe2(row(s), a · e) Lemma 4

= δe2(row(s1), a · e)
= δe2(δ

e
1(row(s1), a), e)

= δe2(row(s1 · a), e)
= δe2(δ

e
1(qinit , s1 · a), e) Lemma4

= f(s1 · a, e) induction hypothesis

= M(qinit , s1 · a · e)
= f(s1, a · e)
= f(s1, e

′)

= f(s, e′)

Lemma 5. E ⊆ Σ∗
E.

Proof. For all e ∈ E, from evidence-closed and

ϵ ∈ S, e ∈ S ∪ R holds. Let e = e1e2 . . . en. Since

S ∪R is prefix-closed, all prefixes of e are in S ∪R.
From output-closed, last characters of all prefixes of

e are in ΣE , that is e1, e2, . . . , en are in ΣE . Hence,

e ∈ Σ∗
E .

From Theorem 2 and Lemma 5, we can prove

that an evidence Mealy machine is minimal.

Theorem 3 (Minimality of Evidence Mealy Ma-

chine). Given a cohesive observation Table T =

(Σ, S,R,ΣE , E, f), if Me = (ΣE , Q, qinit , O, δ
e) is

a Mealy machine constructed from T , then Me is

minimal.

Proof. Assume Me is compatible with its observa-

tion table. For all s ∈ S and e ∈ ΣE ∪ E,

Me(row(s))(e) = Me(δe1(qinit , s))(e) Lemma 4

= δe2(δ
e
1(qinit , s), e)

= f(s, e) Theorem 2

For all s1, s2 ∈ S, if row(s1) ̸= row(s2) then there



exists e ∈ ΣE ∪ E such that f(s1, e) ̸= f(s2, e) be-

cause row(s1) ̸= row(s2).

Then for all s1, s2 ∈ S, if row(s1) ̸= row(s2)

then there exists e ∈ ΣE ∪ E such that

Me(row(s1))(e) ̸= Me(row(s2))(e). From Lemma

5, for all s1, s2 ∈ S, if row(s1) ̸= row(s2) then

there exists e ∈ Σ∗
E such that Me(row(s1))(e) ̸=

Me(row(s2))(e). Therefore, Me is minimal.

4. 2 Separating Predicates

Given an evidence Mealy machine with an al-

phabet Σ, we require two pieces to build a sym-

bolic Mealy machine: (i) a Boolean algebra A with

DA = Σ, and (ii) a partitioning function P for A.

We have already defined a partitioning function

in Definition 8.

Given an evidence Mealy machine Me =

(ΣE , Q, qinit , O, δ
e), a Boolean algebra A with do-

main Σ, and an appropriate partitioning function

P , we build a symbolic Mealy machine M =

(A, Q, qinit , O, δ) using that Boolean algebra and

that exact configuration of the state space Q, the

initial state qinit . All that remains is the construc-

tion of the transition relation δ.

For each q ∈ Q, we gather all transitions of

an evidence Mealy machine out of q into a set

∆ = {(q, a, q′, o} and counstruct a list LΣ indexed

over the states qi ∈ Q and the outputs oj ∈ O such

that each set in lΣ is li,j = {a | (q, a, qi, oj) ∈ ∆q}
We apply the partitioning function to get a list

of separating predicates LΨA = P (LΣ) which is

also indexed over qi ∈ Q and oj ∈ O, and add

(q, φi,j , qi, oj) to δ for each φi,j ∈ LΨA .

We are now ready to prove the final result that

a symbolic Mealy machine constructed from an ob-

servation table is minimal.

Theorem 4 (Minimality of Symbolic Mealy Ma-

chine). Given a cohesive observation Table T =

(Σ, S,R,ΣE , E, f) , if Me = (Σ, Q, qinit , O, δ
e) is

minimal and compatible with T , a symbolic Mealy

machine M = (A, Q, qinit , O, δ) constructed from

Me and a partitioning function P is minimal.

Proof. M is obviously deterministic, complete,

clean, and normalized from the condition of a par-

titioning function. From Lemma 4, all states of M
are reachable. Finally, we show for all p, q ∈ Q if

p ̸= q then there exists w ∈ Σ+M(p, w) ̸= M(q, w).

Before that, we have to prove for all w ∈ Σ+
E and

q ∈ Q, M(q, w) = Me(q, w). We prove this by in-

duction on the length of w. For length 1, by the def-

inition of a partitioning function, δ2(q, a) = δe2(q, a)

holds.

Let us assume that for all w ∈ Σ+
E of length at

most k ≥ 0, δ2(q, w) = δe2(q, w) holds. Let w
′ ∈ Σ+

E

with length k + 1. we can find a decomposition of

w′ such that w′ = a · w for some word of length k

and a ∈ ΣE We can conclude

δ2(q, w
′) = δ2(q, a · w)
= δ2(q

′, w) q′ = δ1(q, a)

= δe2(q
′, w) induction hypothesis

= δe2(q, a · w)
= δe2(q, w

′)

Therefore, for all w ∈ Σ+
E and q ∈ Q, M(q, w) =

Me(q, w) holds, from theorem 3, for all p, q ∈ Q if

p ̸= q then there exists w ∈ Σ+
E M(p, w) ̸= M(q, w)

also holds. Here, from Lemma 5, for all p, q ∈ Q if

p ̸= q then there exists w ∈ Σ+M(p, w) ̸= M(q, w)

holds. Thus M is minimal.

The results of Theorem 1 and 4 prove that a sym-

bolic mealy machine constructed from an observa-

tion table has the minimum number of states.

Corollary 1. Given a cohesive observation ta-

ble T = (Σ, S,R,ΣE , E, f) and a partitioning

function P , a symbolic Mealy machine M =

(A, Q, qinit , O, δ) constructed from T and P has a

minimum number of states.



Algorithm 2 Active Learning of symbolic Mealy

machine
1: Initialize S = {ϵ}, R = {a}, ΣE = {a}, and

E = ∅ ( a is an arbitrary character from Σ)

2: Construct the initial table T = (Σ, S,R,ΣE , E, f)

3: while true do

4: while T is not cohesive do

5: if T is not closed then

6: Apply close to T

7: else if T is not consistent then

8: Apply make-consistent to T

9: else if T is not evidence-closed then

10: Apply evidence-close to T

11: else if T is not output-closed then

12: Apply output-close to T

13: end if

14: end while

15: Construct the evidence mealy machine

Me
H

16: Construct the symbolic mealy machine

MH

17: Send MH to the equivalence oracle

18: if the equivalence oracle returns a coun-

terexample c then

19: Add all prefixes of c to R

20: else

21: return MH

22: end if

23: end while

4. 3 Algorithm Description

We present a description of Λ∗
M . The algorithm

begins by initializing an observation table with

S = {ϵ}, R = {a}, ΣE = {a} for an arbitrary

a ∈ Σ, and E = ∅. f is initially undefined. The

knowledge of the table is grown using the oper-

ations fill, close, make-consistent, evidence-close,

and output-close.

The operation fill asks a membership query for all

w ∈ S ∪R and e ∈ ΣE ∪E for which f is undefined

and then adds those results to f .

The operation close checks the existence of r ∈ R

such that for all s ∈ S row(s) ̸= row(r) and adds

to r to S such an r.

The operation make-consistent checks the exis-

tence of w1, w2 ∈ S ∪ R, and a ∈ Σ such that

w1 · a,w2 · a ∈ S ∪ R and row(w1) = row(w2) but

row(w1 · a) ̸= row(w2 · a). Then it adds a a · e to E

using the e ∈ E such that f(w1 ·a ·e) ̸= f(w2 ·a ·e).
The operation evidence-close checks the existence

of s ∈ S and a e ∈ E such that s · e /∈ S ∪ R and

adds all prefixes of such a s · e to R except those

already present in R.

The operation output-close checks the existence

of w ∈ Σ∗, a ∈ Σ such that w·a ∈ S∪R but a /∈ ΣE .

Then it adds such a to ΣE .

Upon receiving a counterexample t ∈ Σ∗ from an

equivalence query sent to the oracle, all prefixes of

t are added to R except those already present in S.

Algorithm 2 shows an overview of the learning

algorithm: after the table is initialized, the oper-

ations make-consistent, evidence-close, close, and

output-close are applied until the table is cohesive.

A symbolic Mealy machine MH is then conjectured

from the table, and an equivalence query is per-

formed: if MH is equivalent to the target, then the

algorithm terminates. Otherwise, a counterexam-

ple is produced and processed, and the procedure

repeats.

5 Conclusion

We give the formal definition of symbolic Mealy

machines so that Mealy machines can operate over

an infinite set. We then define the minimality of

symbolic Mealy machines and prove that minimal

symbolic Mealy machines have the minimum num-

ber of states. Next, we give an extension of Λ∗

for learning symbolic Mealy machines, called Λ∗
M .



Finally, We prove that a symbolic Melay machine

learned by Λ∗
M has the minimum number of states.

Termination and complexity analysis of this algo-

rithm is future work. Implementation is also future

work.
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