
1

日本ソフトウェア科学会第 40 回大会 (2023 年度) 講演論文集

Automatic Correctness Checking of

Haskell’s Rewrite Rules: Theory and Practice

Makoto Hamana　

We present a theoretical basis for automatic correctness checking of Haskell’s rewrite rules. We also demon-

strate a new tool which implements advanced rewriting techniques as a GHC plugin to ensure the correctness

of GHC’s rewrite rules. Key to our method is ensuring local confluence and strong normalisation of rewrite

rules automatically.

1 Introduction

The Glasgow Haskell Compiler (GHC) is an open

source compiler for the Haskell functional language.

It has the feature of rewrite rules to specify opti-

mising transformations [9]. Rewrite rules have been

widely used in many libraries.

But there has been no formal theory that for-

malises the rules and establishes their correctness.

We present a variant of the polymorphic λ-calculus

extended with rewrite rules and equations. By

giving a rewriting semantics of total Haskell, we

show that rewrite rules and the functional pro-

gramming language based on the polymorphic λ-

calculus are modelled uniformly in a single frame-

work, which allows us to reason about the correct-

ness of rewrite rules. We also demonstrate the tool

ReCheck which automatically checks the correct-

ness of Haskell rewrite rules by local confluence and

termination checking.

The aim of this paper is to establish the founda-

tions of the correctness problems of rewrite rules in

GHC by giving a rewriting theoretical framework

that models Haskell.

∗Haskell における書換え規則の正当性自動検証、その理
論と実践
This is a non-peer-reviewed paper, which is an ex-

tended abstract of a presentation at JSSST 20th

Symposium. Copyrights belong to the Author.

浜名 誠, 群馬大学情報学部, Faculty of Informatics,

Gunma University.

2 Rewrite rules in GHC

To illustrate a problem concerning the correct-

ness of a rule, we consider a Haskell program with

a rewrite rule as shown in Fig. 1. The code inside

the {-# ... #-} is called a pragma. Inside the

RULES pragma there is a rule called "one" which

tells GHC to rewrite an expression “f t” to “1”.

But in the program the function f is defined to

always return 0. What is the output of main?

Calling GHC with -fenable-rewrite-rules ap-

plies the rewrite rule before compilation, so the out-

put is 1. This shows that the rewrite rule inadver-

tently changes the meaning of the original program.

Namely, the rule is wrong. Since the rule feature

was introduced as an optimisation tool, it should

not change the meaning of the original program.

More than 20 years have passed since rewrite

rules were first proposed for GHC [9]. Observations

have shown that is useful in very many libraries†1,
whose efficiency often depends crucially on rewrite

rules. For example, GHC’s own base library con-

tains more than 100 rules. However, GHC does not

currently attempt to check the correctness of rules

in a program. This is dangerous.

†1 https://www.aosabook.org/en/ghc.html



2 日本ソフトウェア科学会第 40回大会 (2023年度)講演論文集

-- Diverge.hs

f :: Int -> Int

f x = 0

{-# RULES

"one" forall x. f x = 1

#-}

main = print (f 2)

-- Append.hs

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

{-# RULES

"assoc" forall xs ys zs. (xs ++ ys) ++ zs = xs ++ (ys ++ zs)

#-}

Fig. 1 Is this rule correct? Figure 2. Append program with the associativity rule

3 How to ensure the correctness of

rules

Ideally, we expect the correctness of rules to be

checked automatically before compilation. In the

case of a simple program like the one in Figure 1,

this may not be difficult. But in general, the prob-

lem gets complicated.

Consider another example of a well-known ap-

pend function in Figure 2, with the associativity

rule for append. This is a typical use of rewriting

rules derived from natural properties of functions.

To say that the rule "assoc" is correct is to prove

that this equation holds for arbitrary lists. As is

well known in the Algebra of Programming method-

ology [2] [3] [6], to prove this requires structural in-

duction on lists. Proving by induction involves

appropriate applications of the induction hypoth-

esis, and sometimes requires non-trivial lemmas.

A clever prover may be able to prove such prop-

erties automatically on inductive types. However,

since Haskell is a higher-order polymorphic func-

tional programming language, programs and rules

can also involve higher-order polymorphic func-

tions. To prove equations involving higher-order

functions, one may need to use more sophisticated

proof principles or denotational semantics. How to

automate such proofs is not obvious and may be

difficult.

In this paper, we address this problem by us-

ing novel rewriting techniques in the System FRE

framework. We provide a method for automati-

cally proving the correctness of rules without the

need for complex proof principles.

4 Equational Logic Approach

To discuss the correctness of a rewrite rule in a

formal setting, we need a suitable framework for

dealing with meaning and equality. One way is to

use denotational semantics and insist that a rule

l ⇒ r preserves meaning as [[l]] = [[r]]. However, this

is not suitable for automatic checking because it

requires the formalisation of various mathematical

structures, such as complete partial orders. More-

over, it is unclear how automatic proofs are pos-

sible for this purpose. Instead, we use a logical

approach to reasoning about equations. We use

equational logic [5] [10] with an appropriate higher-

order and polymorphic typed extension. A rule can

be thought of as an oriented equation. Therefore

we formalise “a rule l ⇒ r is correct w.r.t. a pro-

gram P” as “an equation l = r is provable under

the assumption P”.

For example, we consider again the example of

append in Fig. 2. We regard the program as a set

of equational axioms

P =

{
∀ys :: [a]. [] ++ ys = ys

∀x :: a. xs, ys :: [a]. (x : xs) ++ ys = x : (xs++ ys)

}

Then we can formulate the correctness of an

equation l = r as the provability of it from P.

The inference rules of the ordinary first-

order many-sorted equational logic EL1 con-

sist of reflexivity, transitivity, symmetry, con-

gruence, substitution, and axiom rules [5]

[10] [1]. We denote by P ⊢EL1 s = t the deducibility

of s = t from the axioms of P by EL1 and call s = t

an equational theorem of P.

It is important to note that in EL1 associativity



日本ソフトウェア科学会第 40回大会 (2023年度)講演論文集 3

is not deducible from P:

P ̸ ⊢EL1 ∀xs, ys, zs :: [a]. (xs++ ys)++ zs = xs++(ys++ zs)

(1)

What kind of associativity is deducible from P in

EL1 are all the ground instances:

P ⊢EL1 (xsθ++ ysθ)++ zsθ = xsθ++(ysθ++ zsθ)

(2)

where θ is an arbitrary substitution that assigns a

ground list (i.e. a list containing no variable) to

each variable. The notation xsθ denotes a term

obtained by the application of θ to xs.

To see why (2) is deducible in EL1, consider the

substitution θ : xs, ys, zs 7→ []. Then ([] ++ []) +

+ [] = [] = [] ++ ([] ++ []) is formally provable (by

constructing a proof tree) from P in EL1 by using

the axiom instantiation of the first equation in P,

congruence, symmetry, and transitivity.

For the case of substitution θ : xs 7→ (n : ns),

etc., where n : ns is a ground list, the associa-

tivity is similarly proved using a previously de-

duced associativity for the list ns. This is noth-

ing but a proof by structural induction on lists

using an induction hypothesis. This kind of the-

orems (such as (2)) is known as inductive theo-

rems [1] [10] in theory of term rewriting and uni-

versal algebra. In summary, under the axioms P,

∀xs, ys, zs :: [a]. (xs++ ys)++ zs = xs++(ys++ zs)

is not an equational theorem of P, but an induc-

tive theorem of P. Evevy equational theorem is an

inductive theorem, but not vice versa.

For this reason, we formulate the correctness of

l ⇒ r w.r.t. P as a property whether l = r is an

inductive theorem of P.

5 Rewriting approach to inductive

equational reasoning

For automatic rule checking, we need an algo-

rithm to decide whether an equation is an induc-

tive theorem or not. Ordinary equational theories

can be decided if given axioms are expressed as ter-

minating and confluent rules. This is a well-known

rewriting approach, as Knuth and Bendix solved

the word problem for groups by constructing such

axioms using the completion technique [7]. But

now we need to prove all the ground instances of an

equation (such as (2)), which requires structural in-

duction. This is different from proving a universally

quantified equation (such as (1)) in EL1. Structural

induction could be taken as an additional inference

rule of EL1. But [8] proved that equational logic

with structural induction is not complete. It fol-

lows that inductive theorems on natural numbers

are not recursively enumerable [4]. In this paper

we take a different approach, which establishes the

following new theorem for deciding inductive theo-

rems.

The Rule Correctness Theorem. Let P be

a total Haskell program and l ⇒ r a rewrite rule.

Suppose that

(i) P ∪ {l ⇒ r} is locally confluent, and

(ii) P ∪ {l ⇒ r} is strongly normalising.

Then l = r is an inductive theorem of P, therefore,

l ⇒ r is correct with respect to P.

This theorem provides a simple algorithm for

deciding inductive theorems by checking (i)(ii).

Namely, if we have automatic local confluence and

termination (i.e. strong normalisation) checkers,

then we can decide the correctness automatically.

A remarkable point is that these conditions do not

use structural induction. This theorem is simple

in form, but powerful. In fact, we can use it to

prove the correctness of the associativity of append

This theorem requires checking the termination and

local confluence of the union of a program and

a rewrite rule. Therefore, we will develop meth-

ods to check local confluence and termination of

rewrite systems for Haskell. The termination and

local confluence checking are non-trivial problems

because ordinary rewriting methods are restricted

to first-order terms, not including λ-terms, poly-

morphism and inductive types. We develop an ex-

tension of the higher-order polymorphic λ-calculus

System Fω extended with rewrite rules and equa-

tions. We have also developed a syntactic criteria

to decide local confluence and termination: critical

pair analysis and the Polymorphism Termination

Guarantee.

References

[ 1 ] Baader, F. and Nipkow, T.: Term Rewriting and

All That, Cambridge University Press, 1998.

[ 2 ] Bird, R. and Wadler, P.: An Introduction to

Functional Programming, Prentice Hall, 1988.

[ 3 ] Bird, R. and Moor, O. D.: Algebra of Program-

ming, Prentice-Hall, 1996.

[ 4 ] Davis, M., Matijasevic, Y., and Robinson, J.:

Hilbert’s tenth problem. Diophantine equations:

positive aspects of a negative solution, Proc. Sym-



4 日本ソフトウェア科学会第 40回大会 (2023年度)講演論文集

posia in Pure Math, Vol. AMS 28, 1978, pp. 323–

378.

[ 5 ] Goguen, J. and Meseguer, J.: Completeness of

many-sorted equational logic, Houston Journal of

Mathematics, Vol. 11, No. 3(1985), pp. 307–334.

[ 6 ] Hutton, G.: Programming in Haskell, Cam-

bridge University Press, 2016.

[ 7 ] Knuth, D. and Bendix, P.: Simple Word Prob-

lems in Universal Algebras, Computational Problem

in abstract algebra, Pergamon Press, Oxford, 1970,

pp. 263–297.

[ 8 ] Nourani, F.: On induction for programming

logic: syntax, semantics and inductive closure, Bull.

EATCS, Vol. 13(1981), pp. 51–64.

[ 9 ] Peyton Jone, S., Tolmach, A., and Hoare, T.:

Playing by the rules: rewriting as a practical optimi-

sation technique in GHC, Haskell Workshop 2001,

2001.

[10] Wechler, W.: Universal algebra for computer

scientists, Springer-Verlag, 1992.


