
日本ソフトウェア科学会第 40 回大会 (2023 年度) 講演論文集

Formal Verification of Automated Driving: RSS

and Safety Architectures

Clovis Eberhart, Jérémy Dubut, James Haydon, Ichiro Hasuo

We present our work on Responsibility-Sensitive Safety (RSS). RSS is a methodology to mathematically

prove safety of automated driving. We formalise driving scenarios as programs containing differential equa-

tions. We develop dFHL, a logic based on Hoare logic, to prove properties of such programs. This allows us

to prove properties of complex scenarios. Safety architectures, and in particular the simplex architecture,

play a crucial role in safety of automated driving. We extend dFHL with proof rules tailored to prove

properties of safety architectures. This allows us to formally define of the simplex architecture and formally

prove its safety, as well as define new architectures and prove their safety.

1 Introduction

Automated driving has been a seemingly achiev-

able dream for more than a decade now. The un-

derlying benefits would be a reduced number of ac-

cidents, more efficient transportation systems, and

a positive environmental impact by changing the

transportation paradigm from a personal vehicles

to shared mobility, to name only a few [1]. There is

an impressive body of work on automated driving,

stemming from different communities such as con-

trol theory, communication systems, artificial intel-

∗ 自動運転の形式的検証　ＲＳＳと安全アーキテクチャ
The work is partially supported by ERATO HASUO

Metamathematics for Systems Design Project (No.

JPMJER1603) and ACT-I (No. JPMJPR17UA),

JST; and Grants-in-aid No. 19K20215 & 19K20249,

JSPS.

Clovis Eberhart, 国立情報学研究所, National Institute

of Informatics.

Jérémy Dubut, 国立研究開発法人産業技術総合研究所,

National Institute of Advanced Industrial Science

and Technology.

James Haydon, 国立情報学研究所, National Institute

of Informatics.

Ichiro Hasuo, 国立情報学研究所, National Institute of

Informatics.

ligence and machine learning.

While there has been public interest for a few

years around 2018 following impressive progress by

car manufacturers, it seems that it has died down

in recent years after some deadly crashes involving

automated driving systems. There are of course

existing approaches to safety for automated driv-

ing, but they focus on statistical safety. These

approaches usually consist in either testing [6] or

collecting statistics on automated vehicles on real

roads. However, the guarantees offered by these ap-

proaches are unclear, and their explainability is lim-

ited. On the other hand, we pursue mathematical

proofs of safety, which offer both a strong guaran-

tee (as long as the hypotheses hold, the conclusion

of theorem holds unconditionally) and explainabil-

ity (the proof itself is a detailed explanation). One

such approach is runtime verification for automated

driving [5] [7], but these cannot prove the safety of

a manoeuvre for a variety of instances, only for the

particular instance it is facing.

Responsibility-Sensitive Safety

Responsibility-Sensitive Safety (RSS) [10] is an

existing approach that falls in the category of math-

図 1 Single-lane follow

ematical proofs of safety for automated driving.

For a given situations, the RSS method gives: 1)

a mathematical formula called the RSS condition

and 2) a control strategy called the proper response.

The idea is that, if a vehicle is in a state such

that the RSS condition holds and it executes the

proper response, then it is not responsible for any

collisions. In particular, if all vehicles apply this

behaviour, then there are no collisions (under the

assumptions that there is at least one agent respon-

sible in any collision).

Example 1. To understand RSS better, let us look

at the archetypal example of RSS, called the single-

lane follow scenario, which is depicted in Figure 1.

There, the Subject Vehicle (SV) is the following car

and the Principal Other Vehicle (POV) is the lead-

ing car. Since SV is behind POV and they are mov-

ing in the same direction, SV is deemed responsible

for any collision. Therefore, we need to find an

RSS condition and a proper response under which

SV avoids all collisions.

We make the following assumptions:

• SV and POV behave like one-dimensional point

masses, so their dynamic behaviour isẋ = v

v̇ = a,

where x, v, and a respectively represent their

positions, velocities, and accelerations,

• POV can only accelerate between rates −bmax

(the maximum brake rate) and amax (the max-

imum acceleration),

• POV never drives backwards (its velocity is

non-negative),

• SV only reacts after time ρ (the response time)

has elapsed,

• we want SV to only accelerate at rates between

−bmin (the maximum comfortable brake rate)

and amax.

Then we can derive that the following proper re-

sponse avoids all collisions when the RSS condition

holds. Proper response: SV brakes at rate −bmin

as soon as it starts reacting. RSS condition: the

distance between the two vehicles is greater than

dRSS(vf , vr, ρ), which is defined as

max

(
0, vrρ+

amaxρ
2

2
+

(vr + amaxρ)
2

2bmin
− v2f

2bmax

)
While it is possible to derive RSS conditions and

proper responses for simple scenarios such as the

one above, it becomes unfeasible for humans on

more complex ones that involve multiple POVs and

constraints. Our approach is thus to apply program

logic to reason about driving scenarios. The ad-

vantages are that it is more scalable and less error-

prone. Such an approach can thus help derive RSS

conditions and proper responses for more complex

scenarios, which was impossible to do by hand. We

design a language to model driving scenarios and a

logic dFHL to reason about them.

Safety Architectures in Automated Driv-

ing

Our goal is to create a methodology to design

RSS conditions and proper responses for a wide va-

riety of scenarios. However, such responses can-

not usually be used on their own, either because

they should only be used when safety is critical,

or because they do not cover all possible driving

situations. Safety architectures are techniques that

allow a vehicle to run using one controller most of

the time, then switch to another controller when

some property holds.

The most commonly used safety architecture is

the simplex architecture [2] [9], depicted in Figure 2.

There, the Advanced Controller (AC) runs most

of the time, but when the Decision Module (DM)

deems that safety is critical, control is handed over

to the Baseline Controller (BC), which focuses only

Decision
Module

(DM)

Plant
(P)

Advanced
Controller

(AC)

Baseline
Controller

(BC)

図 2 The simplex architecture

on safety.

RSS can easily be implemented using a simplex

architecture:

• AC is an advanced controller that is optimised

for many parameters (safety, comfort, fuel ef-

ficiency, etc.), and which does not have any

formal guarantees,

• BC executes the proper response,

• DM hands the control to BC when the RSS

condition is about to be violated.

We thus want to not only reason about BC, but

also about the whole safety architecture compris-

ing BC and other components. We thus extend

the logic dFHL to dFHL↓, which has some built-in

features to reason about safety architectures.

Contributions

This paper is an informal introduction to our pre-

vious papers [4] [3]. While it contains definitions

and lemmas, not all details are provided (for exam-

ple, only one derivation rule of dFHL is shown) to

give a flavour of what the logic is about and how it

is used. The reader is invited to read the original

papers for more details.

Overview

In Section 2, we define the syntax and operational

semantics of the language that we use to model au-

tomated driving scenarios, as well as the formal-

ism that we use to specify properties of such pro-

grams. In Section 3, we present the logic dFHL, the

Hoare-style logic that we use to derive properties

of programs. This logic gets extended to dFHL↓ in

Section 4, where this extension allows us to reason

図 3 The emergency pull over scenario

about safety architectures.

2 Hybrid Programs: Syntax and Se-

mantics

In this section, we present the language of hybrid

programs that are used to model driving scenarios.

2. 1 Driving Scenarios

We first give an informal idea of what we mean

by “driving scenario”. Figure 3, represents the pull

over scenario, in which the Subject Vehicle (SV)

must reach a given goal with zero velocity while

avoiding all Principle Other Vehicles (POVs).

A driving scenario consists of:

• a given topology of the road (here, a straight

road with three lanes),

• relative positions of POVs (here, POV3 in

Lane 1 in front of SV, POV1 in Lane 2, and

POV2 in Lane 2 in front of POV1),

• and behaviours for POVs (here, we assume

that all POVs stay in their respective lanes, and

they drive with constant speed bound by some

known constants vmin and vmax, unless another

vehicle is in front of them with less than an RSS

safety distance, in which case they brake until

the RSS safety distance is restored),

• a goal for SV (here, stopping at a designated

point on Lane 3),

• a safety condition for SV (here, avoiding colli-

sions with all POVs).

A driving scenario can give rise to many instances,

where the topological constraints are instantiated

with real values on variables. Here for example,

each different tuple of values of the positions of the

POVs, the speeds of all vehicles, and the distance

to the target area give a different instance of the

pull over driving scenario.

2. 2 Syntax

Now, we want to define a language of programs

that can represent such driving scenarios (or their

instances). This language needs to contain gen-

eral programming constructions to model discrete

control (e.g., the different choices that vehicles can

make), but also constructs that represent the con-

tinuous evolution of systems. We thus use a model

of hybrid programs inspired by differential dynamic

logic [8].

Definition 2 (terms, assertions). A term is a ra-

tional polynomial on a fixed infinite set V of vari-

ables. Assertions are generated by the grammar

A,B ::= true | e ∼ f | ¬A | A ∧B,

where e, f are terms and ∼ ∈ {=,≤, <, 6=}.
As usual, we can derive all Boolean connec-

tors by encoding them as A ∨ B ≡ ¬(¬A ∧ ¬B),

A ⇒ B ≡ ¬A ∨B, and false ≡ ¬true.
Definition 3 (programs). We assume that the set

of variables V = VC tVP tVE is the disjoint union

of VC (cyber variables), VP (physical variables),

and VE (environment variables).

Hybrid program (or programs) are generated by

the grammar

α, β ::= skip | x := e | α;β | if (A) {α} else {β} |
dwhile (A) {ẋ = f} | while (A) {α}

In x := e, x is a cyber variable. In dwhile (A) {ẋ =

f}, x and f are lists of the same length, re-

spectively of (distinct) (non-environment) variables

and terms. We abbreviate if (A) {α} else {skip} as

if (A) {α}.
The basic idea is that:

• physical variables describe physical quantities,

which can only evolve continuously (according

to differential equations in our modelling),

• cyber variables are used by the logical con-

troller, and can change discretely, as well as

continuously,

• environment variables are variables that may

change either discretely or continuously, but

the program has no impact on them, they are

changed independently from how the program

reduces (a possible way to think about this is

to think that the program is running in parallel

with an unspecified environment program that

can change these variables).

2. 3 Semantics

We define an operational semantics for our lan-

guage of hybrid programs. Since we are interested

in safety properties such as absence of collisions and

in termination, it is not enough to map states to end

states. There are several possible ways to track the

intermediate states of computations, and here we

choose an LTL-style approach with explicit traces.

Definition 4 (store). A store is a function ρ : V →
R from variables to reals. Store update is denoted

ρ[x → v]; it maps x to v and any other variable x′

to ρ(x′). The value JeKρ of a term e in a store ρ

is a real defined as usual by induction on e. The

satisfaction relation ρ ⊨ A between stores and as-

sertions is also defined as usual. We write ρ ∼ ρ′

when ∀x ∈ VC t VP , ρ(x) = ρ′(x).

In our approach, traces are tuples (h0, . . . , hn) of

functions hi : [0, ti] → RV . This allows us to ac-

count both for discrete steps by using several func-

tions (on the interval [0, 0]) and continuous ones by

using non-trivial intervals.

Definition 5 (trace). A trace is a (finite or infi-

nite) sequence σ =
(
(t0, h0), (t1, h1), . . .

)
of pairs,

where ti ∈ R≥0 and hi : [0, ti] → RV is a continuous

function.

If σ above is a sequence of length n ∈
N = N ∪ {+∞}, we write dom(σ) ≡
{(i, t) | i < n+ 1, t ≤ ti}, σ(i) = hi and σ(i, t) =

hi(t) for (i, t) ∈ dom(σ). Given σ of finite length

n, we define the ending state end(σ) ∈ RV as

σ(n, tn). Given an assertion C, we define σ ⊨ C

as for all (i, t) ∈ dom(σ), σ(i, t) ⊨ C. We de-

note by δρ the trace
(
(0, fρ)

)
, where fρ(0) = ρ.

Given σ as above and (i, t) ∈ dom(σ), we define

σ|i,t =
(
(t0, h0), . . . , (ti−1, hi−1), (t, hi|[0,t])

)
. The

concatenation of a finite trace σ and a trace σ′ is

denoted σ · σ′. Similarly, �n
i=0σi is the concatena-

tion of traces σ0, . . ., σn, where all are finite (except

maybe σn), and �+∞
i=0σi the concatenation of finite

σ0, σ1, . . .

We do not give the whole operational semantics

of the language, only that of the dwhile construct,

because it is the only non-standard construct of our

language. Its semantics is also the most complex,

since environment variables are allowed to change

during its execution.

Definition 6 (operational semantics (dwhile

only)). The set of valid traces σ for a program α

from a store ρ is defined by induction on α. The

fact that σ is valid for α from ρ is denoted ρ, σ ⊨ α.

For the dwhile construct: ρ, σ ⊨ dwhile (C) {ẋ =

f} if and only if either ρ ⊭ C and σ = δρ; or ρ ⊨ C

and there exists n ∈ N such that σ =
(
(ti, hi)

)
i<n

,

and

• for all i < n, hi|x is differentiable, its deriva-

tive is h′i|x(t) = JfKhi(t)
for all 0 ≤ t ≤ ti,

hi(x) is constant for other x ∈ VC ∪ VP ,and

hi(0) ∼ hi−1(ti−1),

• for all (i, t) ∈ dom (σ), if (i, t) < (n−1, tn−1),

then hi(t) ⊨ C (if n 6= +∞),

• hn−1(tn−1) ⊭ C (if n 6= +∞),

where h−1(t−1) = ρ, and +∞− 1 = +∞.

Informally, a trace for dwhile (A) {ẋ = f} is a tu-

ple of functions
(
(ti, hi)

)
i<n

, where:

• all program variables evolve continuously ac-

cording to the differential equation ẋ = f ,

• each hi denotes a continuous part of the evo-

lution of environment variables,

• a change from hi to hi+1 describes a possible

discrete jump in the values of the environment

variables,

• the evolution continues until A becomes false,

or continues forever otherwise.

While our language is non-deterministic because

of the environment behaviour, it is actually deter-

ministic once the behaviour of the environment has

been fixed.

Example 7 (one-way traffic, modelling). In this

scenario, two vehicles are in the situation described

in Figure 1. We want to prove that SV can avoid

collisions.

In this scenario, x, xPOV, v, and vPOV are physi-

cal variables, and aPOV is an environment variable.

The program of interest is α, which is defined as:

δbrake ≡ {ẋ = v, v̇ = −bmin,

ẋPOV = vPOV, v̇POV = aPOV},
δaccel ≡ {ẋ = v, v̇ = amax,

ẋPOV = vPOV, v̇POV = aPOV},

α ≡

 t := 0; dwhile (t < ρ) {δaccel, ṫ = 1};
dwhile (v > 0) {δbrake}

 .

It models the worst case for SV’s behaviour, which

is when SV accelerates until time ρ, then brakes

at rate −bmin, while POV can behave however they

like.

2. 4 Hoare Quintuples

Now, we want to specify behaviours of programs.

In order to do that, we use a formalism akin to

Hoare triples. However, since we are not only inter-

ested in the input-output behaviour of the program,

but also in the intermediate states, the precise for-

malism is slightly more complex than Hoare triples.

We use Hoare quintuples, which are of the following

form:

A : [P] α [Q] : G.

The meaning is close to that of Hoare triples for

total correctness: if program α runs from the pre-

condition P , then it terminates in the postcondition

Q. Moreover, all states during execution will satisfy

the guarantee G. However, that is only under the

condition that the assumption A holds throughout

the execution.

There is one difficulty in satisfying termination in

our context. Indeed, there are infinite traces that

correspond to finite executions. For example, if the

execution of a dwhile lasts for 3 seconds, then there

exists a trace
(
(ti, hi)

)
i∈N, where ti = 1/2i (of total

length of 2 seconds) cannot formally be extended,

but it is still “incomplete” in the following sense.

Definition 8 (incomplete traces). An infinite trace

of the form ((ti, hi))i∈N with all ti > 0 induces a

function h : [0,
∑

i ti) → RV by for all
∑

i≤n ti ≤
s <

∑
i≤n+1, h(s) = hn(s −

∑
i≤n ti). We say

that a valid trace for α from ρ of the form σ ·
((t1, h1), . . . , (tn, hn)) with

∑
i ti < +∞ is incom-

plete if there is a valid trace of the form σ·(t′, h′)·σ′

where t′ ≥
∑

i ti and for all s <
∑

i ti, h(s) =

h′(s).

We can now formally state the correctness of

Hoare quintuples.

Definition 9 (Hoare quintuple). A Hoare quintu-

ple A : [P] α [Q] : G is totally correct (or sim-

ply correct) if, for all stores ρ ⊨ P and traces

σ =
(
(ti, hi)

)
i<n

valid for α from ρ, then

• termination: if σ ⊨ A, then σ is either finite

or incomplete,

• postcondition: if σ is finite, then end(σ) ⊨ Q,

• safety: for all (i, t) ∈ dom (σ), if σ|i,t ⊨ A,

then σ|i,t ⊨ G.

Example 10 (one-way traffic, specification). The

Hoare quintuple we want to specify to formalise the

property in Example 7 is as follows:

• A ≡ (0 ≤ vPOV ∧ −bmin ≤ aPOV),

• G ≡ (x < xPOV),

• Q ≡ (v = 0),

• P ≡ (xPOV − x > dRSS(vPOV, v, ρ)).

3 dFHL: a Hoare Logic for Automated

Driving

In this section, we design dFHL (differential

Floyd-Hoare logic) a logic to derive Hoare quintu-

ples. We only present the derivation rule for dwhile,

since other rules are very similar to standard ones

for total correctness of Hoare triples.

To prove that some properties holds along the

execution of a dwhile, we need to show that it is an

invariant of the dynamics. In order to express that,

we use the notion of Lie derivative.

The term Lẋ=f e is called the Lie derivative of

e with respect to the dynamics ẋ = f . If x =

(x1, . . . , xn) and f = (f1, . . . , fn), its formal defi-

nition is

Lẋ=f e =

n∑
i=1

∂e

∂xi
fi,

where the terms ∂e
∂xi

are the partial derivatives of e

defined by induction e as usual.

The fundamental lemma of the Lie derivative

(see [11]) is crucial for proving the soundness of

the (DW) rule.

Lemma 11. For any solution x̂ : R≥0 → Rn of the

differential equations ẋ = f , the derivative of the

function t 7→ JeKx̂(t) is given by t 7→ JLẋ=f eKx̂(t).
In other words, the value of expression e evolves

according to Lẋ=f e when variables evolve accord-

ing to the dynamics ẋ = f .

We can now explain the rule in Figure 4. The

idea is to find an invariant, a variant, and a termi-

nator :

• the invariant is some property that stays un-

changed along the dynamics, and which is used

inv : A ∧ evar ≥ 0 ∧ einv ∼ 0 ⇒ Lẋ=f einv ' 0 Var(einv) ∩ VE = ∅
var : A ∧ evar ≥ 0 ∧ einv ∼ 0 ⇒ Lẋ=f evar ≤ eter Var(evar) ∩ VE = ∅
ter : A ∧ evar ≥ 0 ∧ einv ∼ 0 ⇒ Lẋ=f eter ≤ 0 Var(eter) ∩ VE = ∅

(DW)
A : [einv ∼ 0 ∧ evar ≥ 0 ∧ eter < 0] dwhile (evar > 0) {ẋ = f} [evar = 0] : einv ∼ 0 ∧ evar ≥ 0

図 4 Hoare derivation rule for dwhile, here (∼,≃) ∈ {(=,=), (>,≥), (≥,≥)}

to prove the guarantee of the Hoare quintuple,

• the variant is some positive quantity that di-

minishes along the dynamics, and which is used

to prove the postcondition,

• the terminator is used to prove termination of

the dwhile.

To explain the rule a bit more in detail, we consider

the case where (∼,') = (=,=). Then, we know

from the precondition that einv = 0 at the start

of the execution, and by the top-left assumption,

Lẋ=f einv = 0, so the value of einv does not change

along the dynamics, and therefore einv = 0 always

holds. We also know that evar > 0 throughout the

dynamics (because of the operational semantics of

the dwhile) and does not hold at the end, so evar = 0

by continuity at the end of the execution. This

proves both the postcondition and the guarantee.

There are two subtle points. The first one is

termination. In order to prove that the execution

holds, we have to prove that the variant eventually

reaches 0. To ensure that it decreases, it would

be enough to show that Lẋ=f evar < 0, but since

time and values are continuous, it is not enough

to show that it reaches 0. That is the role of the

terminator, which is some negative decrease quan-

tity (it decreases by the bottom-left assumption).

The left assumption thus shows that the variant

decreases with at least a constant pace, so it even-

tually reaches 0.

The second subtlety is the behaviour of the envi-

ronment. It could be that the changes to environ-

ment variables change the value of the invariant,

the variant, or the terminator, which could break

the rule. The right assumptions ensure that it is

not the case.

Example 12 (one-way traffic, proof). We now

want to prove the Hoare quintuple from Example 10.

Since the structure of α is a composition of two

dwhile commands, we need to apply the (DW) rule

twice.

For the first application, the invariant is x −
xPOV−dRSS(v, vPOV, ρ− t) ≥ 0, the variant is ρ− t,

and the terminator is −1.

For the second application, the invariant is x −
xPOV − dRSS(v, vPOV, 0) ≥ 0, the variant is v, and

the terminator is −bmin.

4 dFHL↓: Reasoning about Safety Ar-

chitectures

Formally proving properties of safety architec-

tures is important to derive formal guarantees with

our method. For example, since RSS can be en-

forced using the simplex architecture, we have to

prove not only properties of RSS, but also how it

interacts with other controllers in the simplex ar-

chitecture to get some guarantees that can be used

in practice.

4. 1 Syntax

We first develop some syntactic constructs specif-

ically tailored towards describing safety architec-

tures and reasoning about them.

The base construct that we define is the as-long-

as construct. The construct α as long as A, which

we denote by α ↓ A, behaves as α as long as A

holds, but as soon as A becomes false, the exe-

cution of α is interrupted. This construct can be

defined as syntactic sugar by induction on α. From

α ↓ A, we can derive more complex constructs that

are useful to model safety architectures.

The first one is the fallback construct α →A β ≡(
α ↓ A; if (¬A) {β}

)
, which behaves like α as long

as A holds. If A becomes false at some point, then

the execution of α is stopped and β is executed.

In the case of automated driving, this constructs

allows us to model a simple form of safety architec-

ture, where α is a general controller, β a controller

based on safety, and safety becomes critical when

A becomes false. However, contrary to the sim-

plex architecture, once β is executed, the general

controller α cannot resume execution, even when

safety is no longer critical.

The second construct is the simplex of α and β,

which we denote by α
B←
→A

β. Which behaves like

α →A β, but when B becomes false, the execution

of α restarts. This models a simplex architecture,

where B becoming false models the fact that the

situation is no longer safety-critical. This construct

can also be defined as syntactic sugar.

Example 13 (one-way traffic, simplex architec-

ture). We want to study the scenario in Example 7,

but where SV is controller by a safety architecture.

We want to prove that, if the lead vehicle keeps its

speed above some fixed vmin > 0, then SV can reach

a fixed target xtgt while avoiding collisions. Other-

wise, we can still avoid collisions.

The programs of interest are α and β, which are

defined as follows:

δbrake ≡ {ẋ = v, v̇ = −bmin,

ẋPOV = vPOV, v̇POV = aPOV},
δcruise ≡ {ẋ = v, v̇ = 0, ẋPOV = vPOV, v̇POV = aPOV},

α ≡

dwhile (v > vmin ∧ x < xtgt) {δbrake};
dwhile (x < xtgt) {δcruise};
dwhile (v > 0) {δbrake}

 ,

β ≡ dwhile (v > 0) {δbrake}.
When POV keeps its velocity above vmin at all

times, then we execute α. Otherwise, we execute β.

The whole behaviour of the system is thus modelled

as the fallback α →C β, where C ≡ (vPOV > vmin).

4. 2 Proof Rules

We want to prove two derivation rules for the

fallback architecture. The idea is that, during an

execution of α →C β,

• either C holds throughout the entire execu-

tion, in which case only α runs, and we should

be able to get a strong guarantee

• or C stops holding at some point, in which

case β starts executing, and we can only get a

weaker guarantee.

We call the first case the strong assumption case,

because the strong condition C holds throughout

the execution, and the second one the weak assump-

tion case.

Similar rules can be proved for the simplex archi-

tecture as well as more complex architectures.

Strong Assumption

The strong assumption case is rather straight-

forward, since only α is ever executed, the Hoare

quintuple about α will characterise the execution

of the whole architecture.

We start by giving a rule about the as-long-as

command.

Lemma 14 (strong as-long-as rule). This rule is

correct:
A : [P] α [Q] : G ∧ C

(↓s)
A : [P] α ↓ C [Q] : G.

Then we get the following rule for the fallback

architecture.

Lemma 15 (Hoare rule for α →C β under strong

assumption). If A : [P] α [Q] : G ∧ C is correct

and A ∧ Q ⇒ G then A : [P] α →C β [Q] : G is

also correct.

Weak Assumption

The weak assumption case is more subtle, since

both α and β are executed. We first define

interruption-extensions, which are properties that

hold on an execution of α →C β, even at the mo-

ment C becomes false.

Definition 16 (interruption-extension). We say

that assertion D is an interruption-extension (int-

ext for short) of assertion C for program α from

assertion P along assertion A if, for all ρ ⊨ P ,

σ valid for α from ρ, and (i, t) ∈ dom(σ), if

for all (i′, t′) ∈ dom(σ) such that (i′, t′) < (i, t),

σ(i′, t′) ⊨ A ∧ C, and σ(i, t) ⊨ A, then σ(i, t) ⊨ D.

This definition resembles the safety part of cor-

rectness in Definition 9 and states that, if C holds

during the execution of α, except maybe at the end,

then D holds at the end.

Interruption-extensions allow us to define a

derivation rule for the as-long-as construct.

Lemma 17 (weak as-long-as rule). This rule is

correct:
A ∧ C : [P] α [Q] : G

(↓)
A : [P] α ↓ C [(Q ∧ C) ∨ (D ∧ ¬C)] : D

where D is an int-ext of G∧C for α from P along

A.

The intuition is as follows. If C holds at all times,

then α is not interrupted, and the assumption of

this rule applies, so Q and G can be guaranteed.

Otherwise α is interrupted, in which case, the as-

sumption guarantees that C and G are true at all

times except at the very last time. By definition of

an int-ext, D is then guaranteed at all times.

Finally, we get a rule for the fallback architec-

ture.

Lemma 18 (Hoare rule for α →C β under weak

assumption). If: A : [P] α [Q] : G and A′ :

[P ′] β [Q′] : G′ are correct, E is an int-ext of

G ∧ C for α from P along A′, E ⇒ P ′ ∧ G′,

Q ⇒ Q′, and A′ ∧ C ⇒ A, and Q′ ⇒ G′, then

A′ : [P] α →C β [Q′] : G′ is correct.

5 Conclusion

We have introduced our work on applying pro-

gram logic dFHL to formally prove safety of auto-

mated driving scenarios. We have shown how to

extend it to dFHL↓ to reason about safety archi-

tectures.

There are many things missing from this pa-

per. Apart from the obvious missing rules, we have

not explained the methodology we have developed

to derive RSS conditions for driving scenarios (we

have only shown how to prove that an assertion is

actually an RSS condition), and how this scales to

complex scenarios such as the emergency pull over

scenario in Figure 3.

参 考 文 献
[1] Chan, C.-Y.: Advancements, prospects, and im-

pacts of automated driving systems, International

journal of transportation science and technology,

Vol. 6, No. 3(2017), pp. 208–216.

[2] Crenshaw, T. L., Gunter, E., Robinson, C. L.,

Sha, L., and Kumar, P. R.: The Simplex Reference

Model: Limiting Fault-Propagation Due to Unreli-

able Components in Cyber-Physical System Archi-

tectures, 28th IEEE International Real-Time Sys-

tems Symposium (RTSS 2007), 2007, pp. 400–412.

[3] Eberhart, C., Dubut, J., Haydon, J., and Ha-

suo, I.: Formal Verification of Safety Architectures

for Automated Driving, 2023 IEEE Intelligent Ve-

hicles Symposium (IV), IEEE, 2023, pp. 1–8.

[4] Hasuo, I., Eberhart, C., Haydon, J., Dubut, J.,

Bohrer, R., Kobayashi, T., Pruekprasert, S., Zhang,

X.-Y., Pallas, E. A., Yamada, A., Suenaga, K.,

Ishikawa, F., Kamijo, K., Shinya, Y., and Suetomi,

T.: Goal-Aware RSS for Complex Scenarios via Pro-

gram Logic, IEEE Transactions on Intelligent Ve-

hicles, Vol. 8, No. 4(2023), pp. 3040–3072.

[5] Liu, E. I., Pek, C., and Althoff, M.: Provably-

Safe Cooperative Driving via Invariably Safe Sets,

2020 IEEE Intelligent Vehicles Symposium, IV

2020, Las Vegas, United States, October 19-22,

2020, IEEE, 2020, pp. 8.

[6] Luo, Y., Zhang, X.-Y., Arcaini, P., Jin, Z.,

Zhao, H., Ishikawa, F., Wu, R., and Xie, T.: Tar-

geting requirements violations of autonomous driv-

ing systems by dynamic evolutionary search, 2021

36th IEEE/ACM International Conference on Au-

tomated Software Engineering (ASE), IEEE, 2021,

pp. 279–291.

[7] Pek, C. and Althoff, M.: Efficient Computa-

tion of Invariably Safe States for Motion Planning

of Self-Driving Vehicles, 2018 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Sys-

tems (IROS), 2018, pp. 3523–3530.

[8] Platzer, A.: Logical Foundations of Cyber-

Physical Systems, Springer International Publish-

ing, 2018.

[9] Seto, D., Krogh, B., Sha, L., and Chutinan,

A.: The Simplex architecture for safe online con-

trol system upgrades, Proceedings of the 1998

American Control Conference. ACC (IEEE Cat.

No.98CH36207), Vol. 6, 1998, pp. 3504–3508 vol.6.

[10] Shalev-Shwartz, S., Shammah, S., and Shashua,

A.: On a Formal Model of Safe and Scalable Self-

driving Cars, CoRR, Vol. abs/1708.06374(2017).

[11] Trautman, A.: Remarks on the history of the

notion of Lie differentiation, Variations, Geome-

try and Physics: In honour of Demeter Krupka’s

sixty-fifth birthday, Krupková, O. and Saunders,

D. J.(eds.), Nova Science, 2008, pp. 297–302.

