
様相論理による統計的因果の形式化

川本 裕輔 佐藤 哲也 末永 幸平

因果効果を表現し因果推論の要件を記述するための形式言語 StaCL (Statistical Causality Language) を提案す
る．具体的に，変数の間の因果的性質を論理式で表現するために，介入を表す様相演算子と因果述語の概念を導入す
る．また，介入や因果述語に関する公理を持つ StaCL の演繹体系を定義する．この演繹体系が統計的因果モデルに
基づくクリプキモデルに対して健全であり，統計的因果推論における標準的な道具立てである Pearl の do 計算の規
則を導出できる程度に表現力豊かであることを示す．最後に、因果推論の正しさを StaCL の論理式で定式化し説明
できることを具体例で示す．

1 Introduction

Statistical causality has been gaining significant

importance in a variety of research fields. In par-

ticular, in life sciences, more and more researchers

have been using statistical techniques to discover

causal relationships from experiments and observa-

tions. However, these statistical methods can easily

be misused or misinterpreted. In fact, it is reported

that many research articles have serious errors in

the applications and interpretations of statistical

methods [8] [27].

A common mistake is to misinterpret statistical

correlation as statistical causality. Notably, when

we analyze observational data without experimen-

tal interventions, we may overlook some require-

ments for causal inference and make wrong calcu-
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lations, leading to incorrect conclusions about the

causality.

For this reason, the scientific community has de-

veloped guidelines on many requirements for sta-

tistical analyses [37] [29]. However, since there is no

formal language to describe the entire procedures

and their requirements, we refer to guidelines man-

ually and cannot formally guarantee the correctness

of analyses.

To address these problems, we propose a logic-

based approach to formalizing and explaining the

correctness of statistical causal inference. Specifi-

cally, we introduce a formal language called statisti-

cal causality language (StaCL) to formally describe

and check the requirements for statistical causal in-

ference. We consider this work as the first step to

building a framework for formally guaranteeing and

explaining the reliability of scientific research.

Contributions. Our main contributions are as

follows:

• We propose statistical causality language

(StaCL) for formalizing and explaining statis-

tical causality by using modal operators for in-
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terventions.

• We define a Kripke model for statistical causal-

ity. To formalize not only statistical correla-

tion but also statistical causality, we introduce

a data generator in a possible world to model

a causal diagram in a Kripke model.

• We introduce the notion of causal predicates to

express statistical causality and interpret them

using a data generator instead of a valuation in

a Kripke model. In contrast, (classical) pred-

icates are interpreted using a valuation in a

Kripke model to express only statistical corre-

lations.

• We introduce a sound deductive system AXCP

for StaCL with axioms for probability distri-

butions, interventions, and causal predicates.

These axioms are expressive enough to reason

about all causal effects identifiable by Pearl’s

do-calculus [30]. We show that AXCP can rea-

son about the correctness of causal inference

methods (e.g., backdoor adjustment). Unlike

prior work, AXCP does not aim to conduct

causal inference about a specific causal dia-

gram; rather, it concerns the correctness of the

inference methods for any diagram. To the best

of our knowledge, ours appears to be the first

modal logic that can specify and reason about

the requirements for causal inference.

Related Work. Many studies on causal reason-

ing rely on causal diagrams [31]. Whereas they aim

to reason about a specific diagram, our logic-based

approach aims to specify and reason about the re-

quirements for causal inference methods.

Logic-based approaches for formalizing causal

reasoning have been proposed. To name a few,

Halpern and Pearl provide logic-based definitions

of actual causes where logical formulas with events

formalize counterfactuals [12] [13] [11]. Probabilis-

tic logical languages [19] are proposed to axiom-

atize causal reasoning with observation, interven-

tion, and counterfactual inference. Unlike our logic,

however, their framework does not aim to syntac-

tically derive the correctness of statistical causal

inference. The causal calculus [28] is used to pro-

vide a logical representation [4] [3] of Pearl [31]’s

structural causal model. The counterfactual-

observational language [1] can reason about inter-

ventionist counterfactuals and has an axiomatiza-

tion that is complete w.r.t. a causal team seman-

tics. A modal logic in [2] integrates causal and epis-

temic reasoning. While these works deal with de-

terministic cases only, our StaCL can reason about

statistical causality in probabilistic settings.

There have been studies on incorporating prob-

abilities into team semantics [15]. For example,

team semantics is used to deal with the dependence

and independence among random variables [6] [5].

A probabilistic team semantics is provided for a

first-order logic that can deal with conditional inde-

pendence [7]. A team semantics is also introduced

for logic with exact/approximate dependence and

independence atoms [14]. Unlike our StaCL, how-

ever, these works do not allow for deriving the do-

calculus or the correctness of causal inference meth-

ods.

Concerning the axiomatic characterization of

causality, Galles and Pearl [9] prove that the ax-

ioms of composition, effectiveness, and reversibility

are sound and complete with respect to the struc-

tural causal models. They also show that the re-

versibility axiom can be derived from the composi-

tion axiom if the causal diagram is acyclic (i.e., has

no feedback loop). Halpern [10] provides axioma-

tizations for more general classes of causal models

with feedback and with equations that may have no

solutions. In contrast, our deductive system AXCP

has axioms for causal predicates and two forms of

interventions that can derive the rules of Pearl’s

do-calculus [30], while being equipped with axioms

corresponding to the composition and effectiveness
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Table1: Recovery rates of patients with/without

taking a drug.

Drug No-drug
x = 1 x = 0

Male 0.90 0.85
(18/20) (68/80)

Female 0.69 0.60
(55/80) (12/20)

Total 0.73 0.80
(73/100) (80/100)

-
��	 @@R

x y

z

(a) The actual diagram G with a gender (confounder) z, a treat-

ment x, and an outcome y.

-? @@R
x y

zc

(b) The diagram G⌈c/x⌉ with an intervention to x.

Fig.1: Causal diagrams in Example 1.

axioms mentioned above only for acyclic diagrams.

For the efficient computation of causal reasoning,

constraint solving is applied [17] [18] [35]. Proba-

bilistic logic programming is used to encode and

reason about a specific causal diagram [32]. These

are orthogonal to the goal of our work.

Finally, a few studies propose modal logic for sta-

tistical methods. Statistical epistemic logic [20] [21]

[22] specifies various properties of machine learning.

Belief Hoare logic [24] [26] can reason about statis-

tical hypothesis testing programs. However, unlike

our StaCL, these cannot reason about statistical

causality.

2 Illustrating Example

We first present a simple example to explain our

framework.

Example 1 (Drug’s efficacy) We attempt to

check a drug’s efficacy for a disease by observing

a situation where some patients take a drug and

the others do not.

Table 1 shows the recovery rates and the num-

bers of patients treated with/without the drug. For

both males and females, more patients recover by

taking the drug. However, for the combined pop-

ulation, the recovery rate with the drug (0.73) is

less than that without it (0.80). This inconsistency

is called Simpson’s paradox [34], showing the diffi-

culty of identifying causality from observed data.

To model this, we define three variables: a treat-

ment x (1 for drug, 0 for no-drug), an outcome y

(1 for recovery, 0 for non-recovery), and a gender z.

Fig. 1a depicts their causal dependency; the arrow

xA y denotes that y depends on x. The causal effect

p(y|do(x= c)) of a treatment x= c on an outcome

y [31] is defined as the distribution of y in case y

were generated from x = c (Fig. 1b).

However, since the gender z influences the choice

of the treatment x in reality (Fig. 1a), the causal

effect p(y|do(x= c)) depends on the common cause

z of x and y and differs from the correlation

p(y|x= c). Indeed, in Table 1, 80 % of females

chose to take the drug (x = 1) while only 20 %

of males did so; this dependency of x on the gender

z leads to Simpson’s paradox in Table 1. Thus, cal-

culating the causal effect requires an “adjustment”

for z, as explained below.

Overview of the Framework. We describe

reasoning about the causal effect in Example 1 us-

ing logical formulas in our formal language StaCL

(Section 5).

We define φRCT
def
= dc/xe(c0 = y) to express a ran-

domized controlled trial (RCT), where we randomly

divide the patients into two groups: one taking the

drug (x = 1) and the other not (x = 0). This

random choice of the treatment x is expressed by

the intervention dc/xe for c = 0, 1 in the diagram

Gdc/xe (Fig. 1b). Since x is independent of z in

Gdc/xe, the causal effect p(y|do(x= c)) of x on the

outcome y is given as y’s distribution c0 observed

in the experiment in Gdc/xe.



4 日本ソフトウェア科学会第 40回大会 (2023年度)講演論文集
In contrast, φBDA

def
= (f = y|z,x=c ∧ c1 = z ∧ c0 =

f(c1) ↓y) describes the inference about the causal

effect from observation without intervention to x

(Fig. 1a). This saves the cost of the experiment

and avoids ethical issues in random treatments. In-

stead, to avoid Simpson’s paradox, the inference

φBDA conducts a backdoor adjustment (Section 7)

to cope with the confounder z.

Concretely, the backdoor adjustment φBDA com-

putes x’s causal effect on y as follows. We first

obtain the conditional distribution f
def
= y|z,x=c and

the prior c1
def
= z. Then we conduct the adjustment

by calculating the joint distribution f(c1) from f

and c1 and then taking the marginal distribution

c0
def
= f(c1) ↓y. The resulting c0 is the same as

the c0 in the RCT experiment φRCT; that is, the

backdoor adjustment φBDA can compute the causal

effect obtained by φRCT.

For this adjustment, we need to check the re-

quirement pa(z, x) ∧ pos(x :: z), that is, z is x’s

parent in the diagram G and the joint distribution

x ::z satisfies the positivity (i.e., it takes each value

with a non-zero probability).

Now we formalize the correctness of this causal

inference method (for any diagram G) as the judg-

ment expressing that under the above require-

ments, the backdoor adjustment computes the

same causal effect as the RCT experiment:

pa(z, x) ∧ pos(x :: z) `g φRCT ↔ φBDA. (1)

By deriving this judgment in a deductive system

called AXCP (Section 6), we show the correctness

of this causal inference method for any diagram

(Section 7). We show all proofs of the technical

results in this paper’s full version [25].

3 Language for Data Generation

In this section, we introduce a language for de-

scribing data generation.

3. 1 Constants and Causal Variables

We introduce a set Const of constants to denote

probability distributions of data values and a set

dConst ⊆ Const of deterministic constants, each de-

noting a single data value (strictly speaking, denot-

ing a distribution having a single data value with

probability 1).

We introduce a finite set CVar of causal vari-

ables. A tuple 〈x1, . . . , xk〉 of causal variables repre-
sents the joint distribution of k variables x1, . . . , xk.

We denote the set of all non-empty (resp. pos-

sibly empty) tuples of variables by CVar+ (resp.

CVar∗). We use the bold font for a tuple; e.g.,

x = 〈x1, . . . , xk〉. We write size(x) for the dimen-

sion k of a tuple x. We assume that the variables

in a tuple x are sorted lexicographically.

For disjoint tuples x and y, x :: y denotes the

joint distribution of x and y. Formally, ‘::’ is not

a function symbol, but a meta-operator on CVar∗;

x ::y is the tuple obtained by merging x and y and

sorting the variables lexicographically.

We use conditional causal variables y|z,x=c to de-

note the conditional distribution of y given z and

x = c. We write FVar for the set of all conditional

causal variables. For a conditional distribution y|x
and a prior distribution x, we write y|x(x) for the
joint distribution x :: y.

3. 2 Terms

We define terms to express how data are gener-

ated. Let Fsym be a set of function symbols denot-

ing algorithms. We define the set CTerm of causal

terms as the terms of depth at most 1; i.e.,

u ::= c | f(v, . . . , v)
where c ∈ Const, f ∈ Fsym, and v ∈ CVar ∪ Const.

For example, f(c) denotes a data generated by an

algorithm f with input c. We denote the set of

variables (resp. the set of constants) occurring in a

term u by fv(u) (resp. fc(u)).
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Data generator g
Causal diagram
G given from g

dom(g)= {x, y, z}
f1(z) A g x

f2(z, x) A g y -
��	 @@R

x y

z

Fig.2: The data generator and causal diagram for

Example 1.

We also define the set Term of terms by the BNF:

u ::= x | c | f(u, . . . , u),
where x ∈ CVar+, c ∈ Const, and f ∈ Fsym ∪ FVar.

Unlike CTerm, terms in Term may repeatedly apply

functions to describe multiple steps of data gener-

ation.

We introduce the special function symbol ↓x for

marginalization. y ↓x denotes the marginal distri-

bution of x given a joint distribution y; e.g., for a

joint distribution x = 〈x0, x1〉, x↓x0 expresses the

marginal distribution x0. We also introduce the

special constant ⊥ for undefined values.

3. 3 Data Generators

To describe how data are generated, we intro-

duce the notion of a data generator as a function

g : CVar → CTerm ∪ {⊥} that maps a causal

variable x to a causal term representing how the

data assigned to x is generated. If g(y) = u for

u ∈ CTerm and y ∈ CVar, we write u A g y. For

instance, the data generator g in Fig. 2 models the

situation in Example 1. To express that a variable

x’s value is generated by an algorithm f1 with an

input z, the data generator g maps x to f1(z), i.e.,

f1(z) A g x. Since the causal term f1(z)’s depth is

at most 1, z represents the direct cause of x. We

denote the set of all variables x satisfying g(x) 6= ⊥
by dom(g), and the range of g by range(g).

We assume the following at-most-once condition:

Each function symbol and constant can be used at

most once in a single data generator. This ensures

that different sampling uses different randomness

and is denoted by different symbols.

We say that a data generator g is finite if dom(g)

is a finite set. We say that a data generator g is

closed if no undefined variable occurs in the terms

that g assigns to variables, namely, fv(range(g)) ⊆
dom(g).

We write x ≺g y iff y’s value depends on x’s,

i.e., there are variables z1, . . . , zi (i ≥ 2) such

that z1 = x, zi = y, and zj ∈ fv(g(zj+1)) for

1 ≤ j ≤ i − 1. A data generator g is acyclic if

≺g is a strict partial order over dom(g). Then we

can avoid the cyclic definitions of g . E.g., the data

generator g1 defined by f(z) A g1 x and f(c) A g1 z

is acyclic, whereas g2 by f(z) A g2 x and f(x) A g2 z

is cyclic.

4 Kripke Model for Statistical Causal-

ity

In this section, we introduce a Kripke model for

statistical causality.

We write O for the set of all data values we

deal with, such as the Boolean values, integers, real

numbers, and lists of data values. We write ⊥ for

the undefined value. For a set S, we denote the set

of all probability distributions over S by DS. For a

probability distribution m ∈ DS, we write supp(m)

for the set of m’s non-zero probability elements.

4. 1 Causal Diagrams

To model causal relations corresponding to a

given data generator g, we consider a causal dia-

gram G = (U, V,E) [31] where U ∪ V is the set of

all nodes and E is the set of all edges such that:

• U
def
= fc(range(g)) ⊆ Const is a set of symbols

called exogenous variables that denote distri-

butions of data;

• V
def
=dom(g) ⊆ CVar is a set of symbols

called endogenous variables that may depend

on other variables;

• E
def
= {x→ y ∈V ×V |x∈ fv(g(y))}∪{c→ y ∈
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U ×V | c∈ fc(g(y))} is the set of all structural

equations, i.e., directed edges (arrows) denot-

ing the direct causal relations between vari-

ables defined by the data generator g.

For instance, in Fig. 2, Example 1 is modeled as

the causal diagram G.

Since a causal term’s depth is at most 1, g speci-

fies all information for defining G. By g’s acyclicity,

G is a directed acyclic graph (DAG) (See Proposi-

tion 4 in the full version [25] for details).

4. 2 Pre-/Post-Intervention Distributions

For a causal diagram G = (U, V,E) and a tuple

y ⊆ V , we write PG(y) for the joint distribution of

y over Osize(y) generated according to G. As shown

in the standard textbooks (e.g., [31]), PG(V ) is fac-

torized into conditional distributions according to

G as follows:

PG(V )
def
=

∏
yi∈V PG(yi | paG(yi)), (2)

where paG(yi) is the set of parent variables of yi

in G. For example, in Fig. 2, for V = {x, y, z},
PG(V ) = PG(y |x, z)PG(x | z)PG(z).

For tuples x ⊆ V and o ⊆ O with

size(x) = size(o), the post-intervention distribu-

tion PG(V | do(x=o)) is the joint distribution of V

after x is assigned o and all the variables dependent

on x in G are updated by x := o as follows:

PG(V | do(x=o))
def
=



∏
yi∈V \x PG(yi | paG(yi))

for values of V consistent

with x = o

0 otherwise.

For instance, in Fig. 2, PG(y, z|do(x = o)) =

PG(y|x = o, z)PG(z) for any o∈O.

4. 3 Possible Worlds

We introduce the notion of a possible world to de-

fine the probability distribution of causal variables

from a data generator. Formally, a possible world

is a tuple (g , ξ,m) of (i) a finite and acyclic data

generator g : CVar → CTerm ∪ {⊥}, (ii) an inter-

pretation ξ that maps a function symbol in Fsym

with arity k ≥ 0 to a function from Ok to DO, and

(iii) a memory m that maps a tuple of variables to

a joint distribution of data values, which is deter-

mined by g and ξ. We denote these components of

a world w by gw, ξw, and mw, and the set of all

defined variables in w by Var(w) = dom(mw).

The interpretation ξ can be constructed using a

probability distribution I over an index set I and

a family {ξr}r∈I of interpretations each mapping a

function symbol f with arity k ≥ 0 to a determin-

istic function ξr(f) from Ok to O. Then ξ(f) maps

data values o to the probability distribution over

O obtained by randomly drawing an index r from

I and then computing ξr(f)(o).

If k = 0, f is a constant and ξr(f) ∈ O, hence

ξ(f) ∈ DO is a distribution of data values. For the

undefined constant, we assume ξr(⊥) = ⊥.

4. 4 Interpretation of Terms

Terms are interpreted in a possible world w =

(ξ, g,m) as follows. First, for each index r ∈ I, we
define the interpretation [[ ]]rξ,g that maps a tuple of

k terms to k data values in O or ⊥ by:

[[x]]rξ,g = [[g(x)]]rξ,g

[[c]]rξ,g = ξr(c)

[[〈u1, . . . , uk〉]]rξ,g = ([[u1]]
r
ξ,g , . . . , [[uk]]

r
ξ,g)

[[f(u1, . . . , uk)]]
r
ξ,g = ξr(f)([[〈u1, . . . , uk〉]]rξ,g).

For instance, in Fig. 2, we have [[x]]rξ,g = [[g(x)]]rξ,g =

[[f1(z)]]
r
ξ,g = ξr(f1)([[z]]

r
ξ,g), where the interpreta-

tion of z does not depend on that of x due to g’s

acyclicity. We define the probability distribution

[[u]]w over O by randomly drawing r and then com-

puting [[u]]rξ,g . Similarly, we define [[〈u1, . . . , uk〉]]w
via [[〈u1, . . . , uk〉]]rξ,g .
We remark that the interpretation [[ ]]w defines

the joint distribution PGw of all variables in the

causal diagram Gw; e.g., [[y|z]]w = PGw (y | z) (See

Proposition 5 in the full version [25] for details).
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A function symbol f is interpreted as the function

ξ(f) that maps data values in O to the distribution

over O. We define the memory m by m(x) = [[x]]w

for all x ∈ CVar+. Notice that [[ ]]w is defined using

g and ξ without using m.

We expand the interpretation [[ ]]w to a condi-

tional causal variable y|z,x=c ∈ FVar to interpret

it as a function that maps a value c′ of z to the

distribution [[(x :: y :: z)|z=c′,x=c]]w. We then have

[[y|z,x=c(z|x=c)]]w = [[y|z,x=c]]w([[z|x=c]]w).

For the sake of reasoning in Section 6, for each

data generator g , x ∈ CVar+, and y|z,x=c ∈ FVar,

we introduce a constant c(g,x) and a function sym-

bol f (g,y|z,x=c). For brevity, we often omit the su-

perscripts of these symbols.

4. 5 Eager/Lazy Interventions

We introduce two forms of interventions and

their corresponding intervened worlds. Intuitively,

in a causal diagram, an eager intervention dc/xe ex-
presses the removal of all arrows pointing to a vari-

able x by replacing x’s value with c.

In contrast, a lazy intervention bc/xc expresses

the removal of all arrows emerging from x, which

does not change the value of x itself but affects the

values of the variables dependent on x, computed

using [[c]] (instead of [[x]]) as the value of x.

For instance, Fig. 3 shows how two interventions

dc/xe and bc/xc change the data generator and the

causal diagram in a world w that models Exam-

ple 1.

For a world w and a c ∈ dConst, we define

an eagerly intervened world wdc/xe as the world

where [[c]]w is assigned to x and is used to com-

pute the other variables dependent on x. Formally,

wdc/xe is defined by ξw⌈c/x⌉ = ξw, gw⌈c/x⌉(y) = c

if y = x, and gw⌈c/x⌉(y) = gw(y) if y 6= x. For

instance, in Fig. 3, in the world wdc/xe, we use

the value of c to compute [[x]]w⌈c/x⌉ = ξw(c) and

[[y]]w⌈c/x⌉ = [[f2(z, x)]]w⌈c/x⌉ = [[f2(z, c)]]w.

World Data generator Causal diagram

w
f1(z) A x;

f2(z, x) A y -
��	 @@R

x y

z

w⌈c/x⌉ c A x;

f2(z, x) A y -? @@R
x y

zc

w⌊c/x⌋ f1(z) A x;

f2(z, c) A y -
��	 @@R

x y

z

c

Fig.3: Eager/lazy interventions.

Then the interpretation [[ ]]w⌈c/x⌉ defines the joint

distribution of all variables in the causal dia-

gram Gw after the intervention x := [[c]]w; e.g.,

[[y|z]]w⌈c/x⌉ = PGw (y | do(x= [[c]]w), z) (See Propo-

sition 5 in the full version [25] for details).

We next define a lazily intervened world wbc/xc
as the world where x’s value is unchanged but the

other variables dependent on x are computed us-

ing [[c]]w instead of [[x]]w. Formally, wbc/xc is de-

fined by ξw⌊c/x⌋ = ξw, gw⌊c/x⌋(y) = x if y = x, and

gw⌊c/x⌋(y) = gw(y)[x 7→ c] if y 6= x. E.g., in Fig. 3,

[[x]]w⌊c/x⌋ = [[f1(z)]]w.

For x= 〈x1, . . . , xk〉 and c= 〈c1, . . . , ck〉, we de-

fine dc/xe from the simultaneous replacement

gw⌈c1/x1,...,ck/xk⌉. We also define bc/xc analogously.

4. 6 Kripke Model.

Let Psym be a set of predicate symbols. For a

variable tuple x and a deterministic constant tuple

c, we introduce an intervention relation wR⌈c/x⌉w
′

that expresses a transition from a world w to an-

other w′ by the intervention dc/xe; namely, R⌈c/x⌉ =

{(w,w′) ∈ W ×W | w′ =wdc/xe}.
Then we define a Kripke model for statistical

causality as a tupleM = (W, (R⌈c/x⌉)x∈CVar+,c∈dConst+ ,

V) consisting of:

(1) a set W of all possible worlds over the set

CVar of causal variables;

(2) for each x ∈ CVar+ and c ∈ dConst+, an

intervention relation R⌈c/x⌉;
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(3) a valuation V that maps a k-ary predicate

symbol η ∈ Psym to a set V(η) of k-tuples of

distributions.

Notice that different worlds w and w′ in W may

have different data generators gw and gw′ corre-

sponding to different causal diagrams; that is, W
specifies all possible causal diagrams. Furthermore,

different worlds w and w′ may also have different

interpretations ξw and ξw′ of function symbols if

we do not have the knowledge of functions [23].

5 Statistical Causality Language

5. 1 Predicates and Causal Predicates

Classical predicates in Psym describe statistical

correlation among the distributions of variables,

and are interpreted using a valuation V. For exam-

ple, pos(x) expresses that x takes each value in the

domain O with a non-zero probability. However,

predicates cannot express the statistical causality

among variables, whose interpretation relies on a

causal diagram. Thus, we introduce a set CPsym

of causal predicates (e.g., dsep, nanc, allnanc) and

interpret them using a data generator g instead of

a valuation V.

5. 2 Syntax and Semantics of StaCL

We define the set Fml of formulas : For η ∈ Psym,

χ ∈ CPsym, x∈Var+, u∈Term+, c∈Const+, and

f ∈Fsym ∪ FVar,

φ ::= η(x, . . . ,x) |χ(x, . . . ,x) |u=u | f = f | true |
¬φ |φ ∧ φ | dc/xeφ | bc/xcφ.

Intuitively, dc/xeφ (resp. bc/xcφ) expresses that φ is

satisfied in the eager (resp. lazy) intervened world.

We assume that each variable appears at most once

in x in dc/xe and bc/xc. We use syntax sugar false,

∨, →, and ↔ as usual. Note that the formulas have

no quantifiers over variables.

We interpret a formula in a world w in a Kripke

model M by:

M, w |= η(x1, . . . ,xk) iff ([[x1]]w, . . . , [[xk]]w) ∈ V(η)

M, w |= u = u′ iff [[u]]w = [[u′]]w

M, w |= f = f ′ iff [[f ]]w = [[f ′]]w

M, w |= ¬φ iff M, w 6|= φ

M, w |= φ ∧ φ′ iff M, w |= φ and M, w |= φ′

M, w |= dc/xeφ iff M, wdc/xe |= φ

M, w |= bc/xcφ iff M, wbc/xc |= φ,

where wdc/xe and wbu/xc are intervened worlds and

the interpretation of atomic formulas with causal

predicates χ is given below. For brevity, we often

omit M.

Note that η(x1, . . . , xk) represents a property of k

independent distributions [[x1]]w, . . . , [[xk]]w, where

the randomness ri in each [[xi]]
ri
w is chosen inde-

pendently. In contrast, η(〈x1, . . . , xk〉) expresses

a property of a single joint distribution, since the

same r is used in all of [[x1]]
r
w, . . ., [[xk]]

r
w.

Atomic formulas with causal predicates χ are in-

terpreted using a causal diagram Gw corresponding

to gw. Let ANC(y) is the set of all ancestors of y in

Gw, and PA(y) be the set of all parent variables of

y in Gw. Then:

w |= dsep(x,y, z) iff x and y are d-separated

by z in Gw

w |= nanc(x,y) iff x∩ ANC(y) = ∅ and x∩y = ∅
w |= allnanc(x,y, z) iff x = y \ ANC(z)

w |= pa(x,y) iff x = PA(y) and x ∩ y = ∅,
where the d-separation †1 of x and y by z [36] is

a sufficient condition for the conditional indepen-

dence of x and y given z (See Appendix A in the

full version [25]).

5. 3 Formalization of Causal Effect.

Conventionally, the conditional probability of y

given z = o2 after an intervention x = o1 is

†1 An undirected path in a causal diagram Gw is said

to be d-separated by z if it has either (a) a chain

v′ A v A v′′ s.t. v ∈ z, (b) a fork v′

A

v A v′′

s.t. v ∈ z, or (c) a collider v′ A v

A

v′′ s.t.

v ̸∈ z∪ANC(z). x and y are said to be d-separated

by z if all undirected paths between variables in

x and in z are d-separated by z.
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expressed using the do-operator by P (y | do(x =

o1), z = o2). This causal effect can be expressed

using StaCL:

Proposition 1 (Causal effect) Let w be a world,

x,y, z ∈ Var(w)+ be disjoint, c∈ dConst+,

c′ ∈Const+, and f ∈Fsym. Then:

(i) w |= dc/xe(c′ =y) iff there is a distribution

PGw that is factorized according to Gw and sat-

isfies PGw (y | do(x= c))= [[c′]]w.

(ii) w |= dc/xe(f =y|z) iff there is a distribution

PGw that is factorized according to Gw and sat-

isfies PGw (y | do(x= c), z)= [[f ]]w.

If x and y are d-separated by z, they

are conditionally independent given z [36] (but

not vice versa). StaCL can express this by

|=g(dsep(x,y, z) ∧ pos(z) → y|z,x=c = y|z, where
pos(z) means that z takes each value with a pos-

itive probability, and |=g φ is defined as w |=g φ

for all world w having the data generator g . Fur-

thermore, if [[x]]w and [[y]]w are conditionally in-

dependent given [[z]]w for any world w with the

data generator gw, then they are d-separated by z:

|=g y|z,x=c = y|z∧pos(z) implies |=g dsep(x,y, z)

(See Proposition 15 in the full version [25] for de-

tails).

6 Axioms for StaCL

We present a sound deductive system for StaCL

in the Hilbert style. Our system consists of axioms

and rules for the judgments of the form Γ `g φ.

The deductive system is stratified into two

groups. The system AX, determined by the axioms

in Figs. 4 and 5, concerns the derivation of Γ `g φ

that does not involve causal predicates (e.g., pa,

nanc, dsep). The system AXCP , determined by

the axioms in Fig. 6, concerns the derivation of a

formula φ possibly equipped with causal predicates

in a judgment Γ `g φ.

In these systems, we deal only with the reasoning

that is independent of a causal diagram. Indeed, in

Section 7, we will present examples of reasoning us-

ing the deductive system AXCP that do not refer

to a specific causal diagram.

6. 1 Axioms of AX

Fig. 4 shows the axioms of the deductive system

AX, where we omitted the axioms for propositional

logic and equations (PT for the propositional tau-

tologies, MP for the modus ponens, Eq1 for the

reflexivity, and Eq2 for the substitutions for for-

mulas). EqC and EqF represent the definitions of

constants and function symbols corresponding to

causal variables. PD describes the relationships

among the prior distribution x, the conditional dis-

tribution y|x of y given x, and the joint distribu-

tion x :: y. MPD represents the computation ↓x2

of the marginal distribution x2 from a joint distri-

bution x1.

The axioms named with the subscript EI deal

with eager intervention. Remarkably, DGEI re-

duces the derivation of `g dc/xeφ, which involves

an intervention modality dc/xe, to the derivation of

`g⌈c/x⌉φ, which does not involve the modality un-

der the modified data generator gdc/xe. The axioms

DistrEI
¬ and DistrEI

∧ allow for pushing interven-

tion operators outside logical connectives.

The axioms with the subscript LI deal with lazy

intervention; they are analogous to the correspond-

ing EI-rules. The axioms with the subscript EILI

describe when an eager intervention can be ex-

changed with a lazy intervention.

6. 2 Axioms of AXCP

Fig. 6 shows the axioms for AXCP . DsepCI

represents that d-separation implies conditional in-

dependence. DsepSm, DsepDc, DsepWu, and

DsepCn are the semi-graphoid axioms [36], char-

acterizing the d-separation. However, these well-

known axioms are not sufficient to derive the

relationships between d-separation and interven-
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Axioms for probability distributions

EqC ⊢g c(g,x) = x

EqF ⊢g f (g,y|z,x=c) = y|z,x=c

PD ⊢g (pos(x) ∧ c0 = x ∧ f = y|x ∧ c1 = x ::y) → c1=f(c0)

MPD ⊢g x1 ↓x2= x2 if x2 ⊆ x1� �
Fig.4: The axioms of AX for probability distributions, where x,x1,x2,y ∈ CVar+ are disjoint, c0, c1,

c(g,x) ∈ Const, f, f (g,y|z,x=c) ∈ Fsym.

� �
Axioms for eager interventions

DGEI ⊢g ⌈c/x⌉φ iff ⊢g⌈c/x⌉ φ

EffectEI ⊢g ⌈c/x⌉(x = c)

EqEI ⊢g u1 = u2 ↔ ⌈c/x⌉(u1 = u2) if fv(u1) = fv(u2) = ∅
SplitEI ⊢g ⌈c1/x1, c2/x2⌉φ→ ⌈c1/x1⌉⌈c2/x2⌉φ
SimulEI ⊢g ⌈c1/x1⌉⌈c2/x2⌉φ→ ⌈c′1/x′

1, c2/x2⌉φ if x′
1 = x1\x2, c′1 = c1\c2

RptEI ⊢g ⌈c/x⌉φ→ ⌈c/x⌉⌈c/x⌉φ
CmpEI ⊢g

(
⌈c1/x1⌉(x2 = c2) ∧ ⌈c1/x1⌉(x3 = u)

)
→ ⌈c1/x1, c2/x2⌉(x3 = u)

DistrEI
¬ ⊢g (⌈c/x⌉¬φ) ↔ (¬⌈c/x⌉φ)

DistrEI
∧ ⊢g (⌈c/x⌉(φ1 ∧ φ2)) ↔ (⌈c/x⌉φ1 ∧ ⌈c/x⌉φ2)� �� �

Axioms for lazy interventions

CondLI ⊢g (f = y|x=c) ↔ ⌊c/x⌋(f = y|x=c)

Other axioms are analogous to eager interventions except for EffectEI.� �� �
Axioms for the exchanges of eager and lazy interventions

ExpdEILI ⊢g (⌈c/x⌉c′ = y) ↔ (⌊c/x⌋c′ = y)

ExcdEILI ⊢g pos(z)→
(
(⌈c/x⌉f =y|z)↔(⌊c/x⌋f =y|z)

)� �
Fig.5: The axioms of AX, where x,x1,x2,x3,y, z ∈ CVar+ are disjoint, f ∈ Fsym, c, c1, c2 ∈ dConst+,

c′ ∈ Const+, u,u1,u2 ∈ Term+, and φ,φ1, φ2 ∈ Fml.

tions. Therefore, we introduce two axioms DsepEI

and DsepLI in Fig. 6 for the d-separation be-

fore/after interventions, and four axioms to rea-

son about the relationships between the causal

predicate nanc and the interventions/d-separation

(named Nanc{1,2,3,4} in Fig. 6). By AllNanc,

PaNanc, and PaDsep, we transform the formu-

las using allnanc and pa into those with nanc or

dsep.

6. 3 Properties of Axiomatization

For a data generator g , a set Γ
def
= {ψ1, . . . , ψn}

of formulas, and a formula φ, we write Γ `g φ if

there is a derivation of `g (ψ1∧· · ·∧ψn) → φ using

axioms of AX or AXCP . We write Γ |=g φ if for all

model M and all world w having the data genera-

tor g , M, w |= φ. Then we obtain the soundness

of AX and AXCP .

Theorem 1 (Soundness) Let g be a finite,

closed, and acyclic data generator. Γ ⊆ Fml, and

φ ∈ Fml. If Γ `g φ then Γ |=g φ.

We show the proof in Appendices B and C in the

full version [25]. As shown in Section 7, AXCP

is expressive enough to derive the rules of Pearl’s

do-calculus [30]; it can reason about all causal ef-

fects identifiable by the do-calculus (without refer-

ring to a specific causal diagram). Furthermore,

AX includes/derives the axioms used in the previ-
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ous work [1] that are complete w.r.t. a different se-

mantics without dealing with probability distribu-

tions. We leave investigating whether AX is com-

plete w.r.t. our Kripke model for future work. We

also remark that AXCP has axioms corresponding

to the composition and effectiveness axioms intro-

duced by Galles and Pearl [9].

7 Reasoning About Statistical Causal-

ity

7. 1 Deriving the Rules of the Do-

Calculus

Using StaCL, we express the do-calculus ’s

rules [30], which are sufficient to compute all

identifiable causal effects from observable quanti-

ties [16] [33]. Let fv(φ) be the set of all variables

occurring in a formula φ, and cdv(φ) be the set of

all conditioning variables in φ.

Proposition 2 (Do-calculus rules) Let v,x,y, z ∈
CVar+ be disjoint, x1,x2 ∈ CVar+, and c0, c1, c2 ∈
dConst+. Let S = cdv(φ0) ∪ cdv(φ1).

1. Do1. Introduction/elimination of condition-

ing:

`g dc0/ve(dsep(x,y, z) ∧
∧

s∈S pos(s))

→ ((dc0/veφ0) ↔ dc0/veφ1)

where φ1 is obtained by replacing some occur-

rences of y|z in φ0 with y|z,x=c1 ;

2. Do2. Exchange between intervention and

conditioning:

`g dc0/vebc1/xc(dsep(x,y, z) ∧
∧

s∈S pos(s))

→((dc0/v, c1/xeφ0) ↔ dc0/veφ1)

where φ1 is obtained by replacing every occur-

rence of y|z in φ0 with y|z,x=c1 ;

3. Do3 Introduction/elimination of interven-

tion:

`g dc0/ve(allnanc(x1,x,y)

∧ dc1/x1e(dsep(x,y, z) ∧ pos(z)))

→ ((dc0/veφ) ↔ dc0/v, c1/x1, c2/x2eφ)
where fv(φ) = {y|z} and x

def
= x1 :: x2.

By using the deductive system AXCP , we can

derive those rules. Thanks to the modal operators

for lazy interventions, our derivation of those rules

is partly different from Pearl’s [30] in that it does

not use diagrams augmented with the intervention

arc of the form Fx A x (See Appendix D in the full

version [25]).

7. 2 Reasoning About Statistical Adjust-

ment

We present how AXCP can be used to reason

about the correctness of the backdoor adjustment

discussed in Section 2 (See Appendix A.6 in the full

version [25] for the details of the backdoor adjust-

ment). Fig. 7 shows the derivation of the judgment:

ψpre `g (dc/xec0 = y) ↔ (ψ1 ∧ ψ2 ∧ ψ3). (3)

This judgment asserts the correctness of the

backdoor adjustment in any causal diagram. Recall

that φRCT
def
= (dc/xec0 = y) expresses the RCT and

φBDA
def
=(ψ1∧ψ2∧ψ3) expresses the backdoor adjust-

ment. The correctness of the backdoor adjustment

(φRCT ↔ φBDA) depends on the precondition ψpre.

By reading the derivation tree in a bottom-up

manner, we observe that the proof first converts

(dc/xec0 = y) to a formula to which EqC and EqF

are applicable. Then, the derived axioms Do2 and

Do3 in Proposition 2 are used to complete the proof

at the leaves of the derivation.

In Section 2, we stated the correctness of the

backdoor adjustment in (1) using a simpler require-

ment pa(z, x) instead of ψd1 and ψnanc. We can

derive the judgment (1) from (3), thanks to the

axioms PaDsep and PaNanc.

The derivation does not mention the data gener-

ator g representing the causal diagram G. This ex-

hibits that our logic successfully separates the rea-

soning about the properties of arbitrary causal dia-

grams from those depending on a specific causal di-

agram. Once we prove ψpre `g φRCT ↔ φBDA using

AXCP , one can claim the correctness of the causal

inference (φRCT ↔ φBDA) by checking that the re-
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Axioms for d-separation

DsepCI ⊢g (dsep(x,y,z) ∧ pos(z)) → y|z,x=c =y|z
DsepSm ⊢g dsep(x,y,z) ↔ dsep(y,x,z)

DsepDc ⊢g dsep(x,y ∪ y′,z) → (dsep(x,y,z) ∧ dsep(x,y′,z))

DsepWu ⊢g dsep(x,y ∪ v,z) → dsep(x,y,z ∪ v)

DsepCn ⊢g (dsep(x,y,z)∧dsep(x,v,z ∪ y)) → dsep(x,y ∪ v,z)� �� �
Axioms for d-separation with interventions

DsepEI ⊢g (⌈c/z⌉dsep(x,y,z)) ↔ dsep(x,y,z)

DsepLI ⊢g (⌊c/z⌋dsep(x,y,z)) ↔ dsep(x,y,z)� �� �
Axioms with other causal predicates

Nanc1 ⊢g (nanc(x,y)∧nanc(x,z)) → (f = y|z ↔ ⌈c/x⌉(f = y|z))
Nanc2 ⊢g nanc(x,y) ↔ ⌈c/x⌉nanc(x,y)
Nanc3 ⊢g nanc(x,y) → ⌈c/x⌉dsep(x,y, ∅)
Nanc4 ⊢g (nanc(x,z)∧ dsep(x,y,z))→nanc(x,y)

AllNanc ⊢g allnanc(x,y,z) → nanc(x,z)

PaNanc ⊢g pa(x,y) → nanc(y,x)

PaDsep ⊢g pa(z,x) → ⌊c/x⌋dsep(x,y,z)� �
Fig.6: The additional axioms for AXCP where x,y,y′, z,v ∈CVar+ are disjoint, c∈ dConst+, and f∈Fsym.

⊢g ψd1 → ((⌈c/x⌉ψ0)↔ψ1)
Do2

⊢g ψnanc → ((⌈c/x⌉ψ2)↔ψ2)
Nanc3

⊢g ψd2 → ((⌈c/x⌉ψ2)↔ψ2)
Do3 ⊢g (⌈c/x⌉ψ3)↔ψ3

EqEI

ψpre ⊢g (⌈c/x⌉ψ0 ∧ ⌈c/x⌉ψ2 ∧ ⌈c/x⌉ψ3) ↔ (ψ1 ∧ ψ2 ∧ ψ3)

ψpre ⊢g (⌈c/x⌉(ψ0 ∧ ψ2 ∧ ψ3)) ↔ (ψ1 ∧ ψ2 ∧ ψ3)
DistrEI

∧

ψpre ⊢g (⌈c/x⌉c0 = (y|z(z))↓y) ↔ (ψ1 ∧ ψ2 ∧ ψ3)
EqC, EqF, Eq2

ψpre ⊢g (⌈c/x⌉c0 = (y :: z)↓y) ↔ (ψ1 ∧ ψ2 ∧ ψ3)
PD, Eq2

ψpre ⊢g (⌈c/x⌉c0 = y) ↔ (ψ1 ∧ ψ2 ∧ ψ3)
MPD, Eq2

Fig.7: Sketch of a derivation tree for the correctness of the backdoor adjustment (Section 2) us-

ing AXCP where ψpos
def
= pos(z :: x), ψd1

def
= bc/xcdsep(x,y, z) ∧ ψpos, ψd2

def
= dc/xedsep(x, z, ∅) ∧ ψpos,

ψnanc
def
= nanc(x, z)∧ψpos, ψpre

def
= ψd1 ∧ψnanc, ψ0

def
= (f = y|z), ψ1

def
= (f = y|z,x=c), ψ2

def
= (c1 = z), and

ψ3
def
= (c0 = f(c1)↓y).

quirement ψpre indeed holds for a specific causal

diagram G.

8 Conclusion

We proposed statistical causality language

(StaCL) to formally describe and explain the cor-

rectness of statistical causal inference. We intro-

duced the notion of causal predicates and Kripke

models equipped with data generators. We defined

a sound deductive system AXCP that can deduce

all causal effects derived using Pearl’s do-calculus.

In ongoing and future work, we study the complete-

ness of AX and AXCP and develop a decision pro-

cedure for AXCP for automated reasoning.
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