
日本ソフトウェア科学会第 40 回大会 (2023 年度) 講演論文集

An Adaptation Framework for View-based Data
Sharing in Bipartite Network of Bidirectional
Transformations

Soichiro Hidaka Hiroyuki Kato Masato Takeichi

In distributed environments, controlled data sharing is crucial for meeting security and other policy require-

ments. Dejima architecture supports such data sharing by compositions of bidirectional transformations

(BX). It organizes bipartite networks of BX of which source databases in peers form the first set of nodes

and the views form the second set of nodes, while each BX connects one of the first set as a source database

and another one of the second set as a view. Sources and views form (multi) spans and cospans of BX,

respectively. Such individual topology is also well studied. However, the network is relatively static in the

sense that various reorganizations, including participation of new peers and changing conditions on data

sharing, cannot be easily supported. In this presentation, we propose how to cope with such adaptations

while maintaining the bipartite network structure, borrowing the type system from relational lenses that

are known as BX on relations.

1 Introduction

In distributed environments, controlled data

sharing is crucial for meeting security and other

policy requirements. Dejima architecture [11] sup-

ports such data sharing by compositions of bidi-

rectional transformations [5] [10] [2] [1]. Among vari-

ations in bidirectional transformations, asymmet-

ric state-based approach is used in our framework.

A bidirectional transformation is a pair of forward

transformation function get : S → V from source

of type S to view of type V , and putback function

put : S×V → S that takes a pair of original source

of type S and updated view of type V to produce

updated source of type S. In this paper, we follow

This is an unrefereed paper. Copyrights belong to the

Author(s).

双方向変換の二部ネットワークにおけるビューに基くデー
タ共有のための適応手法

Soichiro Hidaka, 法政大学情報科学部, Faculty of Com-

puter and Information Sciences, Hosei University.

Hiroyuki Kato, 国立情報学研究所, National Institute

of Informatics.

Masato Takeichi, 東京大学, University of Tokyo.

the notation from relational lenses [4] to use l↗
for get component and l↘ for put component of

a given lens l. We also assume the following well-

behavedness properties of such pairs.

l↘ (s, l↗ (s)) = s for all s ∈ S (GetPut)

l↗ (l↘ (s, v)) = v for all (s, v) ∈ S × V

(PutGet)
Having both properties at the same time guaran-

tees that when either source or view is updated, get

or put, respectively, is sufficient to restore consis-

tency between source and view, i.e., round-tripping

transformation is not necessary. We use this prop-

erty to design the workflow of synchronizations.

Cospan composition [13] (a.k.a. Co-targetial

composition [6]) of bidirectional transformations

are useful for sharing data among data sources hav-

ing their own private data. For example, lenses

on trees [8] use such composition to synchronize

bookmarks of different web browsers having their

own properties. Dejima network also utilizes this

composition for synchronizing base tables owned by

peers. In this paper, we use the following figure to

graphically show such compositions.

B1

S1

D

V

B2

S2

l1 l2

If peer 1 shares its data stored in its base table

B1 of type S1 in its database with its counterpart

peer 2 through a view D of type V , then peer 1 can

control the shared information by discarding parts

of the information that are not to be disclosed dur-

ing the forward transformation of lens l1. Peer 1

can accept updates on shared view D through the

backward transformation of l1. Moreover, peer 2

can also share parts of their own database B2 of

type S2 using the same view D in a similar man-

ner. The stable situation (i.e., synchronization is

already established) in such sharing can be sum-

marized as follows.

D = li↗ (Bi), Bi = li↘ (Bi, D) i ∈ {1, 2}
When peer 1 updates their source database B1 to

B′
1, it generates the updated view D′ by l1↗ (B′

1),

and peer 2 accepts the update by generating up-

dated database using l2↘ (B2, D
′) [11].

Each peer in Dejima network forms a span com-

position [12] (a.k.a. co-sourcial composition [6])

of bidirectional transformations as follows, by con-

necting its base table with other peers through their

views.

D1

V1

B

S

D2

V2

l1 l2

When some other peer that is connected with the

view D1 of type V1 updates the view, the peer

owning base table B of type S accepts the up-

date by backward transformation l1↘ (D1, B), and

propagate this change to other set of peers con-

nected with the view D2 by forward transformation

l2↗ (B′) where B′ is the updated base table.

We found that the synchronization by such com-

positions of bidirectional transformations, organiz-

ing bipartite graphs of bidirectional transforma-

tions where base tables form the first set of nodes

and the views (Dejimas) form the second set of

nodes, while each bidirectional transformation con-

nects one of the first set as a source database and

another one of the second set as a view, is quite ver-

satile [3]. However, the network is relatively static

in the sense that the bipartite graphs cannot be

extended and shrunk easily. Therefore, we propose

how to cope with such reorganizations in the bipar-

tite bidirectional transformation network. We can

essentially keep the topology of the bipartite graph

and can encode various reorganizations, including

decomposition and merger of peers, participation of

new peers and temporal disconnection of peers, rec-

onciliation of sharing conditions among peers, us-

ing additional combinations of bidirectional trans-

formations.

We borrow the type system and dynamic seman-

tics from relational lenses [4] in that we assume that

source and target have types associated with con-

straints as boolean predicates and sets of functional

dependencies, and that the type of the view can be

statically derived from the type of the source and

the transformation.

For the moment, we focus on the type of indi-

vidual relation to simplify the argument†1. Then

the type called sort is represented by the triple of

the set of attributes in the relation, the constraint

satisfied by every tuple in the relation, and the set

of functional dependencies that are satisfied by the

relation.

R
(U, P, F)

S
(V,Q,G)

l

The above figure shows a lens l of type

(U,P, F) → (V,Q,G) transforms source relation

R of type (U,P, F) and view relation S of type

(V,Q,G) bidirectionally. Note that we use unidi-

rectional arrows from source to target instead of

†1 Bohannon et al.’s type supports multiple relations

in a database. We use that formulation in Sec-

tion 7.

bidirectional arrows, to clarify the asymmetric na-

ture of l. We may omit the set of attributes and

functional dependencies part when these parts are

not important or apparent from the context.

The fundamental idea of the evolution is that we

make the nodes and edges evolve, while maintaining

the structure of bipartite graph. To achieve this,

we classify the evolution (and degeneration) into

those of source databases, views and edges, and de-

compose the evolution (and degeneration) process

into the preparatory phase to replace component

by their equivalent, and the adaptation phase to

conduct essential adaptation.

The rest of the paper is organized as follows. Sec-

tions 2 and 3 describe our evolutionary framework

for nodes and edges, respectively, for two-party

cases. Only selection is involved in the evolved

part, because we first assume that adjacent peers

already agree on the shared set of attributes. Then

we describe their application to reorganization of

bipartite bidirectional transformation network in

Section 4. Section 5 generalizes our evolutionary

framework to multi-party cases. Section 6 extends

our framework to cope with differences in the set

of attributes. Projection and join are involved in

the evolved part for adaptation and initialization.

Section 7 describes, given relational operators and

their composition, how to reflect changes of con-

straints in both direction. This is part of our adap-

tation framework. Section 8 shows a concrete sce-

nario of gracefully extending data sharing that uti-

lizes node evolution. We mention related work in

Section 9 and conclude our paper along with our

future work in Section 10.

2 Node Evolution

2. 1 Source Database Evolution

First is the preparatory phase. In case of source

database node evolution, we can imagine an appli-

cation of a division (split) of an organization. Sup-

pose, before evolution, that the source database

formed a span of two bidirectional transformations

l1 and l2.

B
(U, P, F)

D1

(V,Q1, G1)

D2

(V,Q1, G2)

l1 l2

We divide the original source database B into

two databases B1 and B2 of type (U,P1, F) and

(U,P2, F), respectively, satisfying B = B1∪B2 and

P = P1 ∨ P2.

B1

(U, P1, F)

B2

(U, P2, F)

D1

(V,Q2, G2)

D2

(V,Q2, G2)

l1 l2

Then we introduce a cospan of new bidirectional

transformations

select from Bi where P1 ∧ P2 as D (i ∈ {1, 2})
centered around the new view D.

B1

(U, P1, F)

D
(U, P1 ∧ P2, F)

B2

(U, P2, F)

σP1∧P2 σP1∧P2
D1

(V,Q2, G2)

D2

(V,Q2, G2)

l1 l2

The view D is initialized by the intersection

of the divided source databases, i.e., D = B1 ∩
B2. In this paper, we write R S

σP instead of

select from R where P as S, and may omit the

source and view relations if they are apparent.

Note that, among B1 and B2, only the tuples

that satisfy P1 and P2 are shared via D. Also

note that both ends of the introduced cospan keep

the interface to the original views D1 and D2 un-

changed, and that the cospan is interchangeable

with the original base table: to degenerate, we re-

move the new bidirectional transformations in the

cospan and restore B as B1 ∪B2. The special case

of this phase is that everything is shared among B1

and B2, i.e, B1 = B2 = D = B and P1 = P2 = P .

The adaptation phase is concerned with the es-

sential evolution. The “internal” two base tables

B1 and B2 may change the condition of sharing

data with each other. To do so, the conditions

of the bidirectional transformations in the cospan

could strengthen or weaken the constraints P1 and

P2. Note that the bidirectional transformations l1

and l2 remain unchanged.

B1

(U, P1, F)

D

(U, P ′
1 ∧ P ′

2, F)

B2

(U, P2, F)

σP ′
1∧P ′

2
σP ′

1∧P ′
2

D1

(V,Q2, G2)

D2

(V,Q2, G2)

l1 l2

To adapt the contents of the table D to the new

predicate P ′
1 ∧ P ′

2, D is reinitialized with σP ′
1∧P ′

2
↗

(B1) ∪ σP ′
1∧P ′

2
↗ (B2). After that, B1 and B2 im-

port the change of D by backward transformations

of σP ′
1∧P ′

2
. This is a general workflow of adjusting

the transformation change in the cospan composi-

tion.

We could further reduce the set of shared

columns, i.e., U to U ′ ⊊ U . We discuss such more

general cases in section 6.

The degeneration to the original base table, that

is the cancellation of the evolution, is always pos-

sible during this phase, by merging B1 and B2 by

the union operation. The degenerated node satis-

fies P1 ∨ P2.

2. 2 View Node Evolution

Suppose a view node D is centered-around by a

cospan of two bidirectional transformations l1 and

l2 as follows.

D
(V,Q,G)

B1

(U, P1, F1)

B2

(U, P2, F2)

l1 l2

In case of view node evolution, the idea is similar

to that of source node evolution, but the objective

of this evolution is different, in that view evolution

can cope with the change of the conditions of shar-

ing via view D. That is, ranges of l1 and l2 do not

have to agree after evolution.

D1

(V,Q,G)

B
(V,Q,G)

D2

(V,Q,G)

σQ σQ
B1

(U, P1, F1)

B2

(U, P2, F2)

l1 l2

In the preparatory first phase, we replace the

view D by a span of two identical bidirectional

transformations σQ centered around the new source

B. The contents of the two new views D1, D2 and

the new source B are initialized by the same con-

tents as D. Then in the adaptation phase, when

B1 changes the sharing condition Q to Q1, then

the cospan centered around D1 correspondingly

changes the condition from Q to Q1. Similarly,

another cospan can follow the sharing condition

change from Q to Q2.

D1

(V,Q1, G)

B
(V,Q1 ∨ Q2, G)

D2

(V,Q2, G)

σQ1 σQ2
B1

(U, P1, F1)

B2

(U, P2, F2)

l′1 l′2

To adapt the contents of the table B to the new

predicate, assuming only one side changes at the

same time, in this case, say Q1 side, then B is up-

dated with σQ1↘ (B,D1). This update is reflected

to D2 by σQ↗ (B). B2 will then import the update

of D2 by the backward transformation of l2. The

other case is symmetric. This is a general workflow

of adjusting the transformation change in a span

composition.

After such evolution, tuples that has been sent

from B1 via D1 make their way to B2 via D2 if it

satisfies Q1 ∧ Q2 and the same in the other direc-

tion. Tuples that satisfy Q1 but not Q2 stays in

B. Similarly, tuples that satisfy Q2 enters the span

from B2 but stays in B if it does not satisfy Q1.

When Q1 becomes equal to Q2 again, the span

can be degenerated to the original view D.

3 Edge Evolution

Suppose a base table B and a viewD is connected

by a bidirectional transformation l as follows.

B
(U,Q, F)

D
(V, P,G)

l

The purpose of edge evolution/degeneration is to

cope with the following two scenarios, based on

which side of l is fixed while the condition of the

other side can change.

One is to keep the constraint of the view D un-

changed, while the owner peer of the base table B

changes the range of the bidirectional transforma-

tion l from P to P ′.

Another scenario is to keep the condition of the

tuples to be exchanged by the owner peer of the

base table B, but the condition of the view D

changes from P to P ′.

The first scenario allows a peer to change its shar-

ing condition without forcing the rest of the peers

that uses the same view as the first peer to change

their bidirectional transformations.

The second scenario allows the view D to change

its condition while keeping the range of the bidi-

rectional transformations centered around the view

unchanged. This is useful when changing the agree-

ment that was originally made around the view D,

without affecting the owner peer of the base table

B, because the peer keeps the bidirectional trans-

formation l unchanged, possibly because the peer

does not want to change l.

We describe these scenarios in Subsections 3. 2

and 3. 3, after we introduce their common prepara-

tory phase.

3. 1 Preparatory Phase

B
(U,Q, F)

D′

(V, P,G)

B′

(V, P,G)

D
(V, P,G)

l σP σP

In the preparatory first phase, we replace the

bidirectional transformation l by the combination

of l from the original base table B to the new view

D′ which is initialized by the copy of D, and the

span of σP between D′ and D, centered around

newly introduced base table B′ which is initialized

by the copy of D.

This preparatory phase can be reverted to restore

the original connection by directly connecting by l

the original base table B and the original view D.

This is because the role of the newly synthesized

edge l′ is equivalent to l. The left-to-right work-

flow of the span transformation is as follows.

B′ := σP↘ (B′, D′)

D := σP↗ (B′)
The right-to-left workflow is symmetric. Since tu-

ples in D′ always satisfy the predicate P , every

tuple in D′ appears in B′ and every tuple in B′

appears in D. Therefore, the span is equivalent to

identity transformation in both direction. So, the

composition of this span with l is equivalent to l.

3. 2 View Condition Preservation

This is achieved in the adaptation phase by

changing the bidirectional transformation l while

keeping the bidirectional transformation from B′

to D unchanged. Suppose the view condition of l

is changed from P to P ′. This change is absorbed

by changing σP from B′ to D′ to σP ′ .

B
(U,Q, F)

D′

(V, P ′, G)

B′

(V, P ′ ∨ P,G)

D
(V, P,G)

l′ σP ′ σP

With this evolution, tuples that satisfy the new

condition P ′ make their way from D′ to B′, but

do not reach D if they do not satisfy the original

condition P . Similarly, tuples that satisfy the orig-

inal condition P make their way from D to B′ by

the backward transformation, but do not reach B

if they do not satisfy the new condition P ′. In this

way, the tuples that satisfy the condition P ′ but

does not satisfy P , or those satisfy the condition P

but does not satisfy P ′ stay in the new base table

B′.

This scenario can be considered as an application

of view node evolution if we view the edge evolu-

tion as an evolution of view node D that keeps the

condition of the new view of the other side of the

original base table B.

3. 3 Source Condition Preservation

Another scenario is to keep the condition of the

tuples to be exchanged by the owner peer of the

original base table B, but the condition of the orig-

inal view changes from P to P ′. The condition of

the tuples that are accumulated in B′ is the same

as the first scenario. This is achieved by changing

the bidirectional transformation between B′ and D

from σP to σP ′ in the adaptation phase.

B
(U,Q, F)

D′

(V, P,G)

B′

(V, P ∨ P ′, G)

D

(V, P ′, G)

l σP σP ′

4 Connectivity Applications

We can apply the above mentioned evolution in

various case of reorganization of bipartite bidirec-

tional transformation network as follows.

4. 1 Inter-peer Connection Introduction

Suppose two peers would like to share some data

but do not agree on the condition on the common

view. More concretely, peer 1 has a view D1 with

condition p1, and peer 2 has a view D2 with condi-

tion p2 for sharing, but p1 and p2 are different.

B1 B2

B1 D1

(U1, p1, F1)

D2

(U2, p2, F2)

B2

l1 l2

We only consider differences in condition part, i.e.,

we assume D1 :: (U1, p1, F1) and D2 :: (U2, p2, F2)

and U1 = U2 = U ∧F1 = F2 = F . See section 6 for

how to cope with U1 ̸= U2. Then we can cope with

this situation in one of the following two ways. One

is to form a span of bidirectional transformations

σp1 and σp2 centered around the new base table B

that is initialized by D1 ∪D2.

B1 D1

(U, p1, F)

B
(U, p1 ∨ p2, F)

D2

(U, p2, F)

B2

l1 σp1 σp2 l2

Note that the ranges of the backward transfor-

mations of the two bidirectional transformations

should agree. We discuss the definition of such

agreement in section 7. 6.

Another way is to insert a cospan of bidirectional

transformations σp1 and σp2 centered around the

new view D that is initialized by D1 ∩D2.

B1 D1

(U, p1, F)

D
(U, p1 ∧ p2, F)

D2

(U, p2, F)

B2

l1 l2σp2 σp1

The first solution can be seen as an application

of view node evolution in the sense that evolved

view is inserted between the two peers that origi-

nally disagree with their views. The second solu-

tion is not particularly associated with evolution-

ary framework, but still maintains bipartite net-

work structure if we remove the intermediate result

of the sequential composition of two bidirectional

transformations on each side of the central view.

B1 D
(U, p1 ∧ p2, F)

B2

l1;σp2 σp1 ◦ l2

4. 2 Inter-view Connection Introduction

Suppose each of two groups of peers are con-

nected with views D1 and D2, and that we would

like to connect the two views, so that the two

groups can share information, but the two views

have sharing conditions p1 and p2 that are differ-

ent. Here we omit the set of attributes and the set

of functional dependencies.

D1

p1

D2

p2

Then we can insert an evolved base table between

the two views.

D1

p1

D2

p2

B1

p1

B2

p2

D

p1 ∧ p2

σp1∧p2 σp1∧p2σp1 σp2

The new view D at the center of evolved node is

initialized by D1 ∩ D2. The new base tables B1

and B2 in the evolved node are initialized by the

content of D1 and D2, respectively, and these are

connected by a cospan of σp1∧p2 as in the above

figure.

Then B1 and D1, B2 and D2 are respectively

connected by σp1 and σp2 as in the above figure.

More direct solution would be the following,

where the new base table B is initialized by the

content of D1∪D2. This corresponds to the config-

uration after degeneration of the previous configu-

ration.

D1

p1

D2

p2

B

p1 ∨ p2

σp1 σp2

4. 3 Database-view Connection Introduc-

tion

Suppose there are a pair of base table B with

condition Q and a view D with condition P ′ that

are not connected, and would like to be connected.

B
(U,Q, F)

D

(V, P ′, G)

Applications are an admission of a peer owning the

base table B to an existing alliance centered around

the view D, or temporal instability of the network

that may separate B and D. We can model this

situation by an edge evolution/degeneration as fol-

lows.

For the first application, we introduce the evolved

edge in source condition preservation scenario de-

scribed in Section 3. 3, to cope with possible differ-

ence in the view condition on the base table side

(P) and that of the view side (P ′).

B
(U,Q, F)

D′

(V, P,G)

B′

(V, P ∨ P ′, G)

D

(V, P ′, G)

l σP σP ′

The tables are initialized by the following work-

flow. Note that, before connection introduction,

B and D may not be consistent in general, so the

workflow assumes such case.

1. D′ := l↗ (B)

2. B′ := σP↘ (D′, ∅)
3. B′ := σP ′↘ (B′, D)

4. D′ := σP↗ (B′)

In step 1, original content of B is exported to D′.

Step 2 sends the content to B′. Step 3 merges the

previous content with the original content of D.

Step 4 merges the original content of D into D′.

After these steps, B := σP↘ (B,D′) imports the

contents in D to B, and D := σP ′↗ (B′) imports

the contents in B to D.

For the second application, we use a slightly

modified edge right after preparatory phase in Sec-

tion 3. 1.

B
(U,Q, F)

D′

(V, ∅, G)

B′

(V, P,G)

D
(V, P,G)

l;σFalse σP∧False σP

Note that the existence of the boolean expression

False effectively keep the original database and the

view disconnected (and thus the content of D′ is

empty), while tuples that satisfies the condition P

are accumulated in the table B′. Then we “switch

on” the connection by replacing the boolean False

to True, and recompute the contents of the center

of the cospan and the span, as well as the view D

as follows.

1. D′ := l↗ (B) ∪ σP↗ (B′)

2. B := l↘ (D′, B)

3. B′ := σP↘ (D′, B′)

4. D := σP↗ (B′)

In step 1, updates on the view and source while dis-

connected are merged in D. In step 2, the updates

on the view are reflected to the source. In steps 3

and 4, the updates on the source are reflected to

the view.

5 Generalization to Multiary Cases

So far, we have discussed the binary cases where

only two views or base tables are involved. The

generalization to more than two views or base ta-

bles are discussed in this section.

Suppose we have three bidirectional transforma-

tions

l1 :: (U, p, F) → (V, q1, G)

l2 :: (U, p, F) → (V, q2, G)

l3 :: (U, p, F) → (V, q3, G)

centered around a source base table B. In the fol-

lowing figures, we omit the set of attributes and the

set of functional dependencies.

D1

q1

D
2

q2

D3
q3

B

p

l1l2

l3

Then the preparatory phase of node evolution

introduces a three base tables B1, B2 and B3

that satisfies p1, p2 and p3, respectively, satisfying

B = B1∪B2∪B3 and p = p1∨p2∨p3. Ternary mul-

ticospan with selection transformation under com-

mon predicate p′ = p1 ∧ p2 ∧ p3 is introduced for a

common view D with condition p′.

During the adaptation phase, the selection con-

ditions pi, i ∈ {1, 2, 3} can be changed to p′i, i ∈
{1, 2, 3} without changing the original bidirectional

transformations li, provided that p′ =
∧

i p
′
i is

maintained (Figure 1). Tuples in Bi (already sat-

D1

q1

D
2

q2

D3
q3

B1

p1

B
2

p2

B3
p3

D

p′

σ
p′σ

p′

σ
p′

l1l2

l3

図 1 Evolved multispan node (p′ = p1 ∧ p2 ∧ p3)

isfies pi) flows into Bj if they satisfy the condition

p′ =
∧

i p
′
i.

Regarding to the view node evolution, suppose

we have three bidirectional transformations

l1 :: (U, q1, F) → (V, p,G)

l2 :: (U, q2, F) → (V, p,G)

l3 :: (U, q3, F) → (V, p,G)

centered around a view table D.

B1

q1

B
2

q2

B3
q3

D

p

l1l2

l3

Then in the preparation phase, we introduce a

multispan of selection bidirectional transformations

σpi , i ∈ {1, 2, 3} from their common source table

B, initialized by the content of D, and pi are iden-

tically initialized to p, while Di, i ∈ {1, 2, 3} are

initialized by the content of D (Figure 2). Then

during the adaptation phase, when li changes its

range to p′i, the counterpart selection changes its

predicate to p′i. Other peers do not have to change

B1

q1

B
2

q2

B3
q3

D1

p1

D
2

p2

D3
p3

B

p′

σp1σp2

σp3

l1l2

l3

図 2 Evolved multicospan node

(p′ = p1 ∨ p2 ∨ p3)

their ranges.

Tuples in Di flows to Dj through the multispan

if they satisfy condition pi ∧ pj .

When the ranges of li, i ∈ {1, 2, 3} agree again,

then the evolved node (Y-shape in the figure) is

shrunk to one view with the agreed condition p′′.

The two evolution scenario can be applied in a

row. If we apply view node evolution followed by

source node evolution, we have a new view at the

center.

B1
q1

B
2

q2

B3
q3

D
p

D
p

D
p

l1l2

l3

B
′

p ∨ p′

B ′

p ∨ p′

B′

p ∨ p′

σpσp

σp

D′

p′

σ
p′σ

p′

σ
p′

図 3 Edge evolution to cope with alliance

agreement change

This configuration can be seen as edge evolution

around a view in a multicospan for the view condi-

tion change.

6 General Reconciliation of Sorts

In the previous sections, our evolutionary frame-

work considers reconciliation of different con-

straints as predicates, but did not cope with dif-

ferences in the set of attributes. For example, in

section 2. 1, we only consider two base tables, in-

troduced in source node evolution, that have iden-

tical set of attributes. Similarly, in Section 4. 1 we

only consider two views that has identical set of

attributes.

In this section, we describe how to reconcile sorts

that have different constraints as well as different

set of attributes. In such situation, common set of

attributes are used for data sharing.

To simplify the argument, we assume the sets

of functional dependencies are equal at the shared

attributes, i.e., we consider two sorts (U1, P1, F1)

and (U2, P2, F2) where U1 ̸= U2, P1 ̸= P2, and

F ′
1 ≡U F ′

2 where U = U1∩U2, F
′
1 ⊆ F1 and F ′

2 ⊆ F2.

To manipulate set of attributes, bidirectional

projection transformation is used. In this paper,

we write

R
(U, P [U − A] ▷◁ P [A], F ∪ {X → A})

S
(U − A,P [U − A], F)

πX→A,a
U−A

instead of

drop A determined by (X, a) from R as S

in reference [4], for A ∈ U , X ∈ U \A and a ∈ P [A],

where source constraint P can be decomposed into

conjunction of P [U−A] and P [A]. P [A] only refers

to attribute(s) in A. We may omit the source and

view relations if they are apparent. We revisit this

bidirectional transformation with more detailed ex-

planation in Section 7, but intuitively, it removes

the column A in the forward direction, and restore

the column in the backward direction. On restora-

tion, the values for the column A is restored using

the functional dependency X → A in the source in-

stance, or the default value a if the value of column

X is not found in the source instance. We may fur-

ther omit the functional dependency X → A and

the default value a. Note that π notation specifies

the remaining attributes, while drop . . . notation

specifies dropped attributes. Since drop . . . drops

only one attribute at a time, projection

R
(U, P, F)

S

(U − V, P [U − V], F ′)

πU−V

involving multiple attributes in set V are repre-

sented by the following composition.

;
Ai ∈ V

drop Ai determined by (Xi, ai) from ,

F = F ′ ∪
∪

Ai∈V {Xi → Ai}

6. 1 Cospan Introduction

In the connection among two sources B1 and B2

of types (U1, P1, F1) and (U2, P2, F2), respectively,

we use the intersection U = U1∩U2 as the common

attributes for data sharing.

B1

(U1, P1, F1)

B2

(U2, P2, F2)

First we introduce projection views to produce

views D1 and D2 with the intersection attributes

U .

B1

(U1, P1, F1)

D1

(U, P1[U], F ′
1)

D2

(U, p2[U], F ′
2)

B2

(U2, P2, F2)

πU πU

Once the views with common set of attributes

are set up, remaining process is the same.

B1

(U1, P1, F1)

D1

(U, P1[U], F ′
1)

D
(U, P, F)

D2

(U, p2[U], F ′
2)

B2

(U2, P2, F2)

πU
σP2[U] σP1[U] πU

P = P1[U] ∩ P2[U]

F = F ′
1 ≡U F ′

2

Note that we require the functional dependencies

at the center of the cospan agree.

Given the following compositions

l1 = πU ;σP2[U]

l2 = πU ;σP1[U],

the initialization of D is achieved by the following

workflow.

1. D := l1↗ (B1) ∪ l2(↗ B2)

2. B1 := l1↘ (B1, D)

3. B2 := l2↘ (B2, D)

Note that the choice of selection after projection

instead of projection after selection is intended. In

terms of forward transformation, they are inter-

changeable, because selection refers only to the at-

tributes that are kept by the projection. However,

in the backward direction, projection after selection

would utilize the default value specified by the pro-

jection transformation more than the other choice.

Suppose a tuple is inserted in the final view. In the

former choice, based on the semantics of Bohannon

et al. [4], the backward transformation of projection

may insert a default value for the dropped column,

if the other tuples do not provide functional depen-

dency that would restore the dropped column. This

is more likely than in the other choice, if the selec-

tion transformation discard such tuples based on

the selection condition. We prefer our choice that

more maintain the original functional dependency.

6. 2 Span Introduction

In the connection among two views D1 and D2 of

types indicated in the following figure, we use the

union U = U1 ∪ U2 as the set of attributes in the

center of the span for data sharing.

D1

(U1, P1, F1)

D2

(U2, P2, F2)

If we have the multi-valued dependency U ↠
(U1\U2)|(U2\U1), the central base table can be ini-

tialized by D1 ▷◁ D2 (natural join of D1 and D2) so

that πU1(D1 ▷◁ D2) = D1 and πU2(D1 ▷◁ D2) = D2

holds. Otherwise, D1 ▷◁ D2 (full outer join) can be

used. The following figure shows an example span

composition using full outer join with predicates

using Null values to restore D1 and D2 from the

result of full outer join.

X Y

a1 b1

a2 b2

a3 b3

D1

X Y Z

a1 b1 c1

a2 b2 c2

a3 b3 Null

a4 Null c4

B

X Z

a1 c1

a2 c2

a4 c4

D2

σY 6=Null ◦ πXY σZ 6=Null ◦ πXZ

Combined with such attributes reconciliation

with condition reconciliation, the general span in-

troduction is summarized in the following figure.

D1

(U1, P1, F1)

B
(U, P, F)

D2

(U2, P2, F2)

σP1 ◦ σ(U1\U′) 6=Null ◦ πU1 πU2 ;σ(U2\U′) 6=Null;σP2

U ′ = U1 ∩ U2

P = P1 ∪ P2

F = F1 ∪ F2

We assume that F1 and F2 do not conflict in F .

6. 3 Edge Evolution by Span Introduction

We can extend the view condition preservation

scenario of edge evolution in section 3. 3 to cope

with changes in attribute sets on the source side.

B
(U,Q, F)

D′

(V ′, P ′, G′)

B′

(V ′′, P ′′, G′′)

D

(V, P ′, G)

l′ σP ′ ◦ πV ′ πV ;σP

V ′′ = V ′ ∪ V

P ′′ = P ′ ∪ P

G′′ = G′ ∪G

The span around table B′ absorbs the attribute sets

difference by additionally using projections to keep

synchronization using set V ′′ which is the union of

the original attribute set V and set of attributes V ′

after the change. We assume that G′ and G do not

conflict in G′′.

7 Type and Static BX

So far, we have focused on the cases where con-

straints on the original base tables before evolution

are fixed. However, in general, these constraints

may change, for example, when the owner peer de-

cided to reduce or extend the data they want to

store. Accordingly, the constraints on the views

may change. In the opposite direction, when the

constraints on the view changes, the constraints on

the source should be changed accordingly. This

leads us to consider bidirectional transformations

of constraints, which is the focus of this section.

In contrast to the transformation of data, we call

the constraint transformation static. The propaga-

tion is based on the type system of Bohannon et

al. [4]. In the rest of this section, we recap their

type system and introduce the static bidirectional

transformations on relations based on Bohannon et

al.’s type system.

Bohannon et al.’s bidirectional transformation

v between source database schema Σ and view

database schema ∆ is denoted by v ∈ Σ ⇔ ∆

where a database schema represent a set of relation

names, ranged over R,S, Database instances,

ranged over by I, J, . . ., represents maps from re-

lation names to relations which are sets of tuples,

ranged over m,n, . . ., which denote mappings from

attribute names in U to attribute values.

As we have already explained, sort(R) =

(U,P, F) denotes a triple of set of attributes U ,

constraint P and the set of functional dependen-

cies F that are satisfied by the tuples in relation

R. Precisely speaking, P in the type system rep-

resents the set of all possible tuples that satisfy

the constraints. So, the interpretation of P is

that m ∈ P ⇔ (JP Km = True). For example,JA = aK{A 7→a,B 7→b} = True.

Function application outputs(F) denotes the set

of fields “that are actually constrained by some

other fields in the relation” [4]. The proposition

“F is in tree form” holds when, intuitively, the

topology formed by the graph of disjoint set of at-

tributes in F as nodes and functional dependencies

in F between them as edges form a directed acyclic

graph. Please refer to reference [4] for their precise

definitions.

In the followings, we introduce the general form

of static bidirectional transformations on relations

and semantics for relational selection, projection

and join operators.

In static bidirectional transformation, forward

transformation F : Expr → Sort → Sort computes

for relational expression e the sort of view from in-

put (source) sort, whereas the backward transfor-

mation B : Expr → (Sort×Sort) → Sort computes

for relational expression e the updated source sort

from original source sort and updated view sort.

We require these transformations to satisfy the fol-

lowing two properties.

FJeKsS = sV ⇒ BJeK(sS, sV) = sS (S-GetPut)

s′S = BJeK(sS, sV) ⇒ FJeKs′S = sV (S-PutGet)

Property S-GetPut says, similarly to original Get-

Put, that source sorts are unchanged after using

backward transformation of the view sorts that

are not updated. Property S-GetPut says, sim-

ilarly to original PutGet, that view sorts are un-

changed after backward transformation followed

by the forward transformation using the updated

source sorts.

We also aim at, though not formalized, least

change in the backward direction.

Now we explain selection, join and projection

transformations. We fix the relational operators,

set of attributes and set of functional dependencies

in the transformation.

7. 1 Static Selection

According to the typing rule T-Select for selec-

tion [4], the constraint of the view is the conjunc-

tion of that of the source relation and the predicate

in the selection transformation.

In the backward direction, the updated view con-

straints should still imply P (otherwise, tuples in

the updated view deviates the constraint P), so,

given the new view constraint X ′, X ′ ⊆ P . So

the updated source constraint will be computed by

Q \ P ∪X ′.

sort(R) = (U,Q, F)

sort(S) = (U,P ∩Q,F)

F is in tree form Q ignores outputs(F)

select from R where P as S ∈
Σ ⊎ {R} ⇔ Σ ⊎ {S}

(T-Select)

FJσP K((U,Q, F)) = (U,X, F), X = P ∩Q

BJσP K((U,Q, F), (U,X ′, F)) = (U,Q \ P ∪X ′, F)

X ′ ⊆ P

F is in tree form

Q,X ′ ignores outputs(F)
With respect to the least change principle, the

change of the source constraint is within the set

representation of P , so there is no extra change that

is invisible on the view. Therefore, the backward

semantics BJσP K complies with the principle.

7. 2 Static Join

According to T-Join in reference [4], the view

constraint of the join of two relations with con-

straints P on attributes U , and constraints Q on at-

tributes V , is P ▷◁ Q which is a constraint that are

decomposable into conjunction of the constraints

on attributes U (denoted by (P ▷◁ Q)[U]) and

constraints on attributes on V (denoted by (P ▷◁

Q)[V]). If there is no such predicate on either side,

that will be considered True. For example, when

U = {a, b} and V = b, c, X = a < b ∧ b < c is de-

composable into X[U] = a < b and X[V] = b < c,

so X = (a < b) ▷◁ (b < c). However a < c is not

decomposable because the predicate a = c extends

across U and V .

Therefore, in the backward direction, given the

updated constraint P ′ ▷◁ Q′ that are decomposable

into that on U and V , the updated constraints are

P ′ and Q′ on U and V , respectively, which satisfies

the same constraints with respect to the functional

dependencies as P and Q, respectively. Note that,

in the backward direction, the constraints of the

original source relations are not used.

sort(R) = (U,P, F) sort(S) = (V,Q,G)

sort(T) = (UV, P ▷◁ Q, F ∪G)

G |= U ∩ V → V

F is in tree form G is in tree form

P ignores outputs(F) Q ignores outputs(G)

join dl R,S as T ∈ Σ ⊎ {R,S} ⇔ Σ ⊎ {T}
(T-Join)

FJ▷◁K((U,P, F), (V,Q,G)) = (UV, P ▷◁ Q, F ∪G)

BJ▷◁K(((U,P, F), (V,Q,G)), (UV, P ′ ▷◁ Q′, F ∪G))

= ((U,P ′, F), (V,Q′, G))

R ▷◁ S
def
= join dl R,S

G |= U ∩ V → V

F is in tree form G is in tree form

P, P ′ ignores outputs(F)

Q,Q′ ignores outputs(G)

7. 3 Static Projection

According to T-Drop in reference [4], projection

on the set of columns U in which a column A is re-

moved in the forward direction, given the source

constraint P that is decomposable into P [U − A]

and P [A], the view constraint is P [U −A]. There-

fore, in the backward direction, the new view con-

straint should still refer only to the set U −A, and

that part is reflected to the source constraint, while

A component of the constraint should remain un-

changed.

sort(R) = (U,P, F)

A ∈ U F ≡ F ′ ∪ {X → A}
sort(S) = (U −A,P [U −A], F ′)

P = P [U −A] ▷◁ P [A] {A = a} ∈ P [A]

drop A determined by (X, a) from R as S ∈
Σ ⊎ {R} ⇔ Σ ⊎ {S}

(T-Drop)

FJπU−AK((U,P [U −A] ▷◁ P [A], F ′ ∪ {X → A}))
= (U −A,P [U −A], F ′)

BJπU−AK((U,P, F), ((U −A,P ′[U −A], F ′)))

= ((U,P ′[U −A] ▷◁ P [A], F ′ ∪ {X → A}))
A ∈ U F ≡ F ′ ∪ {X → A}
P = P [U −A] ▷◁ P [A] {A = a} ∈ P [A]

P ′ = P ′[U −A] ▷◁ P ′[A] P ′[A] = P [A]

The condition P ′[A] = P [A] is required for the

least change principle. Note that, when we write

the updated view sort as (U−A,P ′[U−A], F ′), we

assume that P ′[U−A] satisfies the set of functional

dependencies F ′.

7. 4 Static Composition

The typing rule of composition T-Compose in

reference [4] requires that the view schema of the

first bidirectional transformation and the source

schema of the second bidirectional transformation

are equal.

v ∈ Σ ⇔ Σ′ w ∈ Σ′ ⇔ ∆

v;w ∈ Σ ⇔ ∆
(T-Compose)

Two schema Σ1 and Σ2 being equal means the

sorts associated with the set of relations are equiv-

alent.
∀R1 ∈ Σ1.∀R2 ∈ Σ2.

R1 = R2 ⇒ sort1(R1) ≡ sort2(R2)

sort1(R1) ≡ sort2(R2)
def
=

sort1(R1) = (U,P, F) ∧ sort2(R2) = (U,Q,G)∧
F ≡U G ∧ P ≡U Q

P ≡U Q
def
= ∀m : U.JP Km ⇔ JQKm

To propagate constraint changes along with this

rule, the forward transformation of the static com-

position uses the updated view constraints re-

sulted from the static forward transformation of

the first bidirectional transformation as the source

constraints of the static forward transformation of

the second bidirectional transformation. Similarly,

the backward transformation of the static composi-

tion creates the updated intermediate constraint as

the result of the static backward transformation of

the second bidirectional transformation that uses

the original intermediate constraint resulted from

the static forward transformation of the first bidi-

rectional transformation, and the updated target

constraints. The updated intermediate constraint

is then used as the updated target constraint of the

static backward transformation of the first bidirec-

tional transformation.

FJl1; l2KsS = FJl2K(FJl1KsS)
BJl1; l2K(sS, sV) = BJl1K(sS,BJl2K(FJl1KsS, sV))
7. 5 Static Cospan Composition
I1

Σ1

I

Σ

I2

Σ2

v1 ∈ Σ1 ⇔ Σ v2 ∈ Σ2 ⇔ Σ

The typing rule for the cospan composition of

bidirectional transformations v1 and v2 requires

that the view schema of v1 and v2 are equal.

Correspondingly, the static forward propagation

of constraint is achieved by FJv1K followed by

BJv2K, and the opposite direction is symmetric.

7. 6 Static Span Composition
I1

Σ1

I

Σ

I2

Σ2

v1 ∈ Σ ⇔ Σ1 v2 ∈ Σ ⇔ Σ2

The typing rule for the span composition of bidi-

rectional transformations v1 and v2 requires that

the source schema of v1 and v2 are equal.

Correspondingly, the static forward propagation

of constraint is achieved by BJv1K followed by

FJv2K, and the opposite direction is symmetric.

8 Concrete Example

Figure 4 shows a concrete application of node

evolution and degeneration ((a) to (f)). In this

hypothetical scenario, two instructors Hidaka and

Kato who belong to the same faculty are going to

teach a common subject for each department which

are Computer Science (CS for short) and Informa-

tion Systems Architecture Science (IS for short), re-

spectively. Every student in the faculty belongs to

either CS or IS. We write DEPARTMENT to mean

a student belong to department DEPARTMENT .

The instructors also lead their own laboratories

(HL and KL). This situation is illustrated in Fig-

ure 4 (a). The formula CS ∨ IS below the box of

B shows that every student belongs to either CS

or IS. To prepare classes for each department, the

base table storing student data of the faculty is

disjointly split by source node evolution (b). No-

tice the new constraints on each base table being

CS and IS , sharing condition by the cospan BX is

CS ∧ IS . Since the two departments are disjoint,

initial view is empty. Then the two instructors de-

cided to share information on students belonging to

each laboratory. Note that such students may be-

long to either of the department. Therefore, each

instructor prepare to change the sharing condition

by the preparation phase of view node evolution

(c). Nothing is shared yet at this stage. Then the

instructors extend the (provision) range by chang-

ing the selection condition of BX by disjunction

of (CS ∧ KL) for Hidaka, and (IS ∧ HL) for Kato

(d). Note that the difference of sharing conditions

in both sides are absorbed by the span at the cen-

ter. We run the workflow in the figure to reflect the

change, i.e., to actually export data about students

that belong to the other laboratory. The order in

the workflow is relevant.

After the workflow, the data in bow tie shape

appear in the central base table B. Even at this

stage, no update is propagated among B1 and B2

because no instructor receives the data exported by

the other instructor yet. So the instructors extend

the receiving range by extending the condition of

the central span, followed by static backward trans-

formation of the selection at both ends (e). That

extends the condition of each base table: CS to

CS ∨ HL for B1, and IS to IS ∨ KL for B2. The

workflow in the figure is conducted to propagate

applicable tuples.

Now that all the conditions of the bidirectional

transformations are equal, the evolved node is

ready to degenerate. After refactoring the formula,

the degenerated configuration is shown in Figure 4

(f).

To create this state immediately after (b), we

could have initialized each table by the following

receive data about the students belonging to own laboratory

𝐵! 𝐵"

𝐼𝑆 ∨ 𝐾𝐿𝐶𝑆 ∨ 𝐻𝐿

(𝐶𝑆 ∧ 𝐼𝑆)
∨ 𝐼𝑆 ∧ 𝐻𝐿
∨ (𝐶𝑆 ∧ 𝐾𝐿)

𝐶𝑆 ∧ 𝐼𝑆
∨ 𝐶𝑆 ∧ 𝐾𝐿
∨ (𝐼𝑆 ∧ 𝐻𝐿)

(𝐶𝑆 ∧ 𝐼𝑆)
∨ 𝐼𝑆 ∧ 𝐻𝐿
∨ (𝐶𝑆 ∧ 𝐾𝐿)

	 𝐶𝑆 ∨ 𝐻𝐿 ∧ 𝐼𝑆 ∨ 𝐾𝐿
= {	distribution	of ∧ over ∨}
	 𝐶𝑆 ∧ 𝐼𝑆 ∨ 𝐾𝐿 ∨ 𝐻𝐿 ∧ 𝐼𝑆 ∨ 𝐾𝐿
= {	distribution	of ∧ over ∨}
	 𝐶𝑆 ∧ 𝐼𝑆 ∨ 𝐶𝑆 ∧ 𝐾𝐿 ∨ 𝐻𝐿 ∧ 𝐼𝑆 ∨ 𝐻𝐿 ∧ 𝐾𝐿
= 	 { 𝐶𝑆 ∧ 𝐼𝑆 = ∅, 𝐻𝐿 ∧ 𝐾𝐿 = ∅}
	 𝐶𝑆 ∧ 𝐾𝐿 ∨ 𝐻𝐿 ∧ 𝐼𝑆

= share data about student of
(own department or own lab)

and
(counterpart department or counterpart lab)

𝐵!
𝐶𝑆 ∨ 𝐻𝐿 ∧ (𝐼𝑆 ∨ 𝐾𝐿)

𝐼𝑆 ∨ 𝐾𝐿

𝐶𝑆 ∨ 𝐻𝐿 ∧ (𝐼𝑆 ∨ 𝐾𝐿)

node(view) degeneration

𝐵"
𝐶𝑆 ∨ 𝐻𝐿 ∧ (𝐼𝑆 ∨ 𝐾𝐿)

𝐶𝑆 ∧ 𝐾𝐿 ∨ 𝐼𝑆 ∧ 𝐻𝐿

share data about students of
(own department and counterpart lab)

or
(counterpart department and own lab)

refactor the sharing condition
 to conjunctions

①get ②put①get②put

all conditions being equal,
the evolved node is ready to degenerate

To create this state immediately,
initialize each table by the following.
𝐵! = 𝜎"#∨%&(𝐵)
𝐵' = 𝜎(#∨)& 𝐵
𝐷 = 𝜎)& 𝐵! ∪ 𝜎%& 𝐵'

⊎ : disjoint union

Nothing is shared at the beginning

𝜎2∈(45∩75)

𝐶𝑆 ∧ 𝐼𝑆
= False

𝐵 𝐵 = CS ⊎ IS
CS ∩ IS = ∅

𝐶𝑆 𝐼𝑆

Nothing is shared yet

∅𝐵! 𝐵"
𝐶𝑆 ∧ 𝐼𝑆

𝐼𝑆

∅ ∅

𝐶𝑆

𝐶𝑆 denotes 𝑥 ∈ CS

𝐶𝑆 ∧ 𝐼𝑆 𝐶𝑆 ∧ 𝐼𝑆

𝐶𝑆 ∨ 𝐼𝑆

𝜎2∈(45∩75)

𝐶𝑆 ∧ 𝐼𝑆

provide data about the students belonging to the other lab

𝐵! 𝐵"

𝐶𝑆 ∧ 𝐼𝑆
∨ (𝐶𝑆 ∧ 𝐾𝐿)

𝐼𝑆𝐶𝑆

(𝐶𝑆 ∧ 𝐼𝑆)
∨ (𝐼𝑆 ∧ 𝐻𝐿)

KL

𝐶𝑆 ∧ 𝐼𝑆
∨ (𝐶𝑆 ∧ 𝐾𝐿)

(𝐶𝑆 ∧ 𝐼𝑆)
∨ (𝐼𝑆 ∧ 𝐻𝐿)

𝐶𝑆 ∧ 𝐼𝑆

𝐶𝑆 ∧ 𝐼𝑆 ∨ 𝐶𝑆 ∧ 𝐾𝐿 ∨ 𝐼𝑆 ∧ 𝐻𝐿
= 𝐶𝑆 ∧ 𝐾𝐿 ∨ 𝐼𝑆 ∧ 𝐻𝐿

（provision） range extension

（receipt）range extension

𝐶𝑆 ∨ 𝐻𝐿

ISCS

Base table decomposition by source
(base table) node evolution

View node evolution

𝐶𝑆 ∧ 𝐼𝑆𝐶𝑆 ∧ 𝐼𝑆

①get ②put ③get④put

HL

𝐵! 𝐵"∅

①〜④:The workflow to reflect range change
No updats are propagated to the other side because 𝐶𝑆 ∧ 𝐾𝐿 ∧ 𝐼𝑆 ∧ 𝐻𝐿 = False

𝐷! 𝐵 𝐷"

(a)

(b)

(c)

(d)

(e)

(f)

𝐶𝑆 ∧ 𝐼𝑆
∨ 𝐶𝑆 ∧ 𝐾𝐿
∨ (𝐼𝑆 ∧ 𝐻𝐿)

図 4 Node evolution example

workflow.

1. B1 := σCS∨HL(B)

2. B2 := σIS∨KL(B)

3. D := σKL(B1) ∪ σHL(B2)

9 Related Work

Asano et al. [3] summarized their BISCUITS

project led by Zhenjiang Hu on Software Founda-

tions for Interoperability of Autonomic Distributed

Data Based on Bidirectional Transformations. The

project is based on Dejima architecture [11], which

is a bipartite bidirectional transformation network.

Present paper assumes the architecture. However,

the architecture itself does not support systematic

reconfiguration as we propose in this paper.

In Section 2.3 of the summary paper, they briefly

propose to replace a view (Dejima group) in bi-

partite bidirectional transformation network by a

multispan (new dedicated peer) when more expres-

sive power of synchronization was needed. In the

present paper, this idea is formalized as a view node

evolution in Section 2. Now our framework is more

general to cover source node evolution as well as

edge evolution. Asano et al. [3] also briefly men-

tion in the same section on how to reconcile ranges

of bidirectional transformations on both sides of

cospan composition. They propose to use conjunc-

tion of each other’s constraint, as we followed in

Section 4. 1. However, they did not provide more

systematic framework for rage reconciliation as we

do in this paper.

10 Conclusion and Future Work

In this paper, we proposed an adaptation frame-

work for bipartite network of bidirectional trans-

formations. The idea is based on gracefully in-

serting (multi)spans and (multi)cospans of bidi-

rectional transformations, gracefully in the sense

that node and edge insertions are achieved without

changing the topology of the bipartite graph nor ex-

isting sharing constraints at the connected nodes.

Spans were useful to absorb differences in sharing

conditions and set of attributes, while cospans were

used in combination with conjunction of constraints

and intersection of shared attributes. The con-

straints satisfied by the tuples that flow through

the adapted components were also formalized. The

static propagation of constraint changes were pro-

posed as static bidirectional transformation for se-

lection, join, projection and their composition, to

complement the evolution. Concrete application

scenario was shown to demonstrate effectiveness of

our adaptation framework.

There is plenty of room in our framework for im-

provements. In range reconciliation, we assumed

the set of functional dependencies already agreed.

It is not even clear to us what is meant by functional

dependency reconciliation. In the static bidirec-

tional transformation, column and functional de-

pendency changes were not discussed. In the center

of span and cospan composition, conflict may arise

for simultaneous propagation of changes. We only

consider cases where only one of participating bidi-

rectional transformations updates the central table,

while other participants accept changes. Resolving

conflict was not considered in this paper. The com-

bination of operational transformation [7] and bidi-

rectional transformation was proposed, for exam-

ple in reference [9]. However, global consistency is

not explicitly considered as Dejima architecture did

by two-phase commit and two-phase locking, and

BCDS Agent [14] did by first writer wins. We have

no implementation of our framework. We would

like to provide software modules for evolved nodes

and edges. These belong to our future work.

Acknowledgments This work is partially sup-

ported by by JSPS Kakenhi 21H03419, 17H06099

(BISCUITS project) and JST CREST JP-

MJCR21M4. We thank BISCUITS project mem-

bers for their constructive comments and sugges-

tions.

References

[1] Abou-Saleh, F., Cheney, J., Gibbons, J., McK-

inna, J., and Stevens, P.: Introduction to Bidirec-

tional Transformations, Lecture Notes in Computer

Science, Vol. 9715, Springer International Publish-

ing, 2018, pp. 1–28.

[2] Anjorin, A., Diskin, Z., Wang, M., and

Xiong, Y.: Bidirectional Transformations, (NII

Shonan Meeting 2016-13), NII Shonan Meet. Rep.,

Vol. 2016(2016).

[3] Asano, Y., Cao, Y., Hidaka, S., Hu, Z., Ishihara,

Y., Kato, H., Nakano, K., Onizuka, M., Sasaki, Y.,

Shimizu, T., Takeichi, M., Xiao, C., and Yoshikawa,

M.: Bidirectional Collaborative Frameworks for

Decentralized Data Management, Software Foun-

dations for Data Interoperability, Fletcher, G.,

Nakano, K., and Sasaki, Y.(eds.), Cham, Springer

International Publishing, 2022, pp. 13–51.

[4] Bohannon, A., Pierce, B. C., and Vaughan,

J. A.: Relational Lenses: A Language for Updat-

able Views, Proceedings of the Twenty-Fifth ACM

SIGMOD-SIGACT-SIGART Symposium on Prin-

ciples of Database Systems, PODS ’06, New York,

NY, USA, Association for Computing Machinery,

2006, pp. 338–347.

[5] Czarnecki, K., Foster, J. N., Hu, Z., Lämmel, R.,

Schürr, A., and Terwilliger, J.: Bidirectional Trans-

formations: A Cross-Discipline Perspective, ICMT,

2009, pp. 260–283.

[6] Diskin, Z.: Algebraic Models for Bidirectional

Model Synchronization, MODELS, Czarnecki, K.,

Ober, I., Bruel, J., Uhl, A., and Völter, M.(eds.),

2008, pp. 21–36.

[7] Ellis, C. A. and Gibbs, S. J.: Concurrency

Control in Groupware Systems, Proc. SIGMOD’89,

1989, pp. 399–407.

[8] Foster, J. N., Greenwald, M. B., Moore, J. T.,

Pierce, B. C., and Schmitt, A.: Combinators for

bidirectional tree transformations: A linguistic ap-

proach to the view-update problem, ACM Trans-

actions on Programming Languages and Systems,

Vol. 29, No. 3(2007), pp. 17.

[9] Habu, M. and Hidaka, S.: Conflict Resolution

for Data Updates by Multiple Bidirectional Trans-

formations, Software Foundations for Data Inter-

operability, Fletcher, G., Nakano, K., and Sasaki,

Y.(eds.), Cham, Springer International Publishing,

2022, pp. 62–75.

[10] Hu, Z., Schürr, A., Stevens, P., and Ter-

williger, J. F.: Bidirectional Transformation ”bx”

(Dagstuhl Seminar 11031), Dagstuhl Reports, Vol. 1,

No. 1(2011), pp. 42–67.

[11] Ishihara, Y., Kato, H., Nakano, K., Onizuka,

M., and Sasaki, Y.: Toward BX-based Architecture

for Controlling and Sharing Distributed Data, 2019
IEEE International Conference on Big Data and

Smart Computing (BigComp), 2019, pp. 1–5.

[12] Johnson, M. and Rosebrugh, R. D.: Spans

of lenses, CEUR@EDBT/ICDT, Candan, K. S.,

Amer-Yahia, S., Schweikardt, N., Christophides, V.,

and Leroy, V.(eds.), 2014, pp. 112–118.

[13] Johnson, M. and Rosebrugh, R. D.: Cospans

and symmetric lenses, Conference Companion of

the 2nd International Conference on Art, Science,

and Engineering of Programming, Marr, S. and Sar-

tor, J. B.(eds.), 2018, pp. 21–29.

[14] Takeichi, M.: BCDS Agent: An Architecture

for Bidirectional Collaborative Data Sharing, Com-

puter Software, Vol. 38, No. 3(2021), pp. 3 41–3 57.

	Introduction
	Node Evolution
	Source Database Evolution
	View Node Evolution

	Edge Evolution
	Preparatory Phase
	View Condition Preservation
	Source Condition Preservation

	Connectivity Applications
	Inter-peer Connection Introduction
	Inter-view Connection Introduction
	Database-view Connection Introduction

	Generalization to Multiary Cases
	General Reconciliation of Sorts
	Cospan Introduction
	Span Introduction
	Edge Evolution by Span Introduction

	Type and Static BX
	Static Selection
	Static Join
	Static Projection
	Static Composition
	Static Cospan Composition
	Static Span Composition

	Concrete Example
	Related Work
	Conclusion and Future Work

