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A General Semantic Construction of Dependent

Refinement Type Systems, Categorically

Satoshi Kura

Dependent refinement types are types equipped with predicates that specify preconditions and postcon-

ditions of underlying functional languages. We propose a general semantic construction of dependent re-

finement type systems from underlying type systems and predicate logic, that is, a construction of liftings

of closed comprehension categories from given (underlying) closed comprehension categories and posetal

fibrations for predicate logic. We give sufficient conditions to lift structures such as dependent products,

dependent sums, computational effects, and recursion from the underlying type systems to dependent re-

finement type systems. We demonstrate the usage of our construction by giving semantics to a dependent

refinement type system and proving soundness.

1 Introduction

Dependent refinement types [6] are types

equipped with predicates that restrict values in the

types. They are used to specify preconditions and

postconditions which may depend on input values

and to verify that programs satisfy the specifica-

tions. Many dependent refinement types systems

are proposed [5, 6, 13, 14, 25] and implemented in,

e.g., F⋆ [23, 24] and LiquidHaskell [19, 26,27].

In this paper, we address the question: “How

are dependent refinement type systems, underly-

ing type systems, and predicate logic related from

the viewpoint of categorical semantics?” Although

most existing dependent refinement type systems

are proved to be sound using operational seman-

tics, we believe that categorical semantics is more

suitable for the general understanding of their na-

ture, especially when we consider general compu-

tational effects and various kinds of predicate logic

(e.g., for relational verification). This understand-

ing will provide guidelines to design new dependent

refinement type systems.

Our answer to the question is a general semantic

construction of dependent refinement type systems
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from underlying type systems and predicate logic.

More concretely, given a closed comprehension cat-

egory (CCompC for short) for interpreting an un-

derlying type system and a fibration for predicate

logic, we combine them to obtain another CCompC

that can interpret a dependent refinement type sys-

tem built from the underlying type system and the

predicate logic.

For example, consider giving an interpretation to

the term “x : {int | x ≥ 0} ` x + 1 : {v : int | v =

x+1}” in a dependent refinement type system. Its

underlying term is “x : int ` x + 1 : int,” and

we assume that it is interpreted as the successor

function of Z in Set. The problem here is how to

refine this interpretation with predicates. In de-

pendent refinement types, predicates may depend

on the variables in contexts. In this example, the

type “x : {int | x ≥ 0} ` {v : int | v = x + 1}” de-

pends on the variable x. Thus, the interpretation

of such types must be a predicate on the context

and the type, i.e.,Jx : {int | x ≥ 0} ` {v : int | v = x+ 1}K
= {(x, v) ∈ Z× Z | x ≥ 0 ∧ v = x+ 1}.

As a result, the term in the dependent refinement

type system is interpreted as the interpretation in

the underlying type system together with the prop-

erty that if the input satisfies preconditions, then

the output satisfies postconditions.

We formalize this refinement process as a con-
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Fig. 1 Lifting.

struction of liftings of CCompCs, which are used

to interpret dependent type theories. Assume that

we have a pair of a CCompC p : E → B for

interpreting underlying type systems and a fibra-

tion q : P → B for predicate logic satisfying cer-

tain conditions. Then we construct a CCompC

{E | P} → P for interpreting dependent refinement

type systems. This construction also yields a mor-

phism of CCompCs from {E | P} → P to p : E → B
in Fig. 1. Given the simple fibration s(Set) → Set

for underlying type systems and the subobject fi-

bration Sub(Set) → Set for predicate logic, then

we get interpretations like Fig. 2.

We extend the construction of liftings of CCom-

pCs to liftings of fibred monads [1] on CCompCs,

which is motivated by the fact that many depen-

dent refinement type systems have computational

effects, e.g., exception (like division and asser-

tion), divergence, nondeterminism [25], and proba-

bility [5]. Assume that we have a fibred monad T̂

on p : E → B, a monad T on B, and a lifting Ṫ

of T along q : P → B. Under a certain condition

that roughly claims that T̂ and T represent the

same computational effects, we construct a fibred

monad on {E | P} → P, which is a lifting of T̂ in the

same spirit of the given lifting Ṫ . This situation

is rather realistic because the fibred monad T̂ on

the CCompC p : E → B is often induced from the

monad T on the base category B. The lifting Ṫ of

the monad T along p : P → B specifies how to map

predicates P ∈ PX on values X ∈ B to predicates

ṪP ∈ PTX on computations TX, which enables us

to express, for example, total/partial correctness

and may/must nondeterminism [1].

We explain the usage of these categorical con-

structions by giving semantics to a dependent re-

finement type system with computational effects,

which is based on [4]. Our system also supports

subtyping relations induced by logical implication.

We prove soundness of the dependent refinement

type system.

Finally, we discuss how to handle recursion in de-

pendent refinement type systems. In [4], Ahman

gives semantics to recursion in a specific model,

i.e., the fibration of continuous families of ω-cpos

CFam(CPO) → CPO. We consider more general

characterization of recursion by adapting Conway

operators for CCompCs, which enables us to lift

the structure for recursion. We show that a rule

for partial correctness in our dependent refinement

type system is sound under the existence of a gen-

eralized Conway operator.

Our contributions are summarized as follows.

• We provide a general construction of liftings

of CCompCs from given CCompCs and pose-

tal fibrations satisfying certain conditions, as a

semantic counterpart of construction of depen-

dent refinement type systems from underlying

type systems and predicate logic. We extend

this to liftings of fibred monads on the underly-

ing CCompCs to model computational effects.

• We consider a type system (based on

EMLTT [2–4]) that includes most of basic

features of dependent refinement type sys-

tems and prove its soundness in the liftings of

CCompCs obtained from the above construc-

tion.

• We define Conway operators for dependent

type systems. This generalizes the treatment

of general recursion in [4]. We prove sound-

ness of the typing rule for partial correctness

of recursion under the existence of a lifting of

Conway operators.

2 Preliminaries

We review basic definitions and fix notations for

comprehension categories, which are used as cat-

egorical models for dependent type theories. We

assume basic knowledge of fibrations (see e.g. [10]).

Let p : E → B be a fibration (opfibration).

We denote the cartesian (cocartesian) lifting over

u : I → J by u(Y ) : u∗Y → Y (u(X) : X → u!X)

where u∗ : EJ → EI (u! : EI → EJ) is the rein-

dexing (coreindexing) functor. We call p : E → B
a posetal fibration if p is a fibration such that each

fibre category is a poset. Note that the fibration

p : E → B is split and faithful if p is posetal.

A comprehension category is a functor P : E →
B→ such that the composite cod ◦ P : E → B is a

fibration and P maps cartesian morphisms to pull-
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Fig. 2 The interpretation of x : {int | x ≥ 0} ⊢ x+ 1 : {v : int | v = x+ 1}.

backs in B. A comprehension category P is full if

P is fully faithful.

A comprehension category with unit is a fibra-

tion p : E → B that has a fibred terminal ob-

ject 1 : B → E and a comprehension functor

{−} : E → B which is a right adjoint of the fi-

bred terminal object functor 1 a {−}. Projection

πX : {X} → pX is defined by πX = pϵ
1⊣{−}
X for

each X ∈ E. Intuitively, E represents a collection

of types Γ ` A in dependent type theories; B rep-

resents a collection of contexts Γ; p : E → B is

the mapping (Γ ` A) 7→ Γ; 1 : B → E is the

unit type Γ 7→ (Γ ` 1); and {−} is the mapping

(Γ ` A) 7→ Γ, x : A where x is a fresh variable.

The comprehension category with unit p : E → B
induces several structures. It induces a compre-

hension category P defined by PX = πX . The

adjunction 1 a {−} defines the bijection s :

EI(1I,X) ∼= {f : I → {X} | πX ◦ f = idI}
between vertical morphisms in E and sections in

B. For each X,Y ∈ EI , we have an isomorphism

ϕ : E{X}(1{X}, π∗
XY ) ∼= EI(X,Y ). Consider the

pullback square P(πX(Y )) where X,Y ∈ EI . By

the universal property of pullbacks, we have the

symmetry isomorphism σX,Y : {π∗
XY } → {π∗

Y X}
as a unique morphism σX,Y such that ππ∗

X
Y =

{πY (X)} ◦ σX,Y and {πX(Y )} = ππ∗
Y

X ◦ σX,Y .

Similarly, we have the diagonal morphism δX :

{X} → {π∗
XX} as a unique morphism δX such that

ππ∗
X

X ◦ δX = {πX(X)} ◦ δX = id{X}.

Let p : E → B be a comprehension category with

unit and q : D → B be a fibration. The fibration

q has p-products if π∗
X : DpX → D{X} has a right

adjoint π∗
X a

∏
X for each X ∈ E and these adjunc-

tions satisfy the BC (Beck-Chevalley) condition for

each pullback square Pf where P is a comprehen-

sion category induced by p and f is a cartesian

morphism in E. Similarly, we define p-coproducts

by
∐

X a π∗
X and p-equality by EqX a δ∗X plus the

BC condition for each cartesian morphism (see [10,

Definition 9.3.5] for detail).

A comprehension category with unit p : E → B
admits products (coproducts) if it has p-products

(p-coproducts). The coproducts are strong if the

canonical morphism κ : {Y } → {
∐

X Y } defined

by {πX(
∐

X Y ) ◦ ηπ∗
X⊣

⨿
X } is an isomorphism for

each X ∈ E and Y ∈ E{X}. A closed compre-

hension category (CCompC) is a full comprehen-

sion category with unit that admits products and

strong coproducts and has a terminal object in the

base category. A split closed comprehension cate-

gory (SCCompC) is a CCompC such that p is a

split fibration, and the BC condition for products

and coproducts holds strictly (i.e., canonical iso-

morphisms are identities). For example, the simple

fibration sB : s(B) → B on a cartesian closed cate-

gory B is a SCCompC (see [10, Theorem 10.5.5]).

Another example of SCCompCs is the family fibra-

tion famSet : Fam(Set) → Set.

Fibred coproducts in a comprehension category

with unit p : E → B are strong if the functor

〈{ι1}∗, {ι2}∗〉 : E{X+Y } → E{X} × E{Y } is fully

faithful where ι1 : X → X+Y and ι2 : Y → X+Y

are injections for fibred coproducts. Strong fibred

coproducts are used to interpret fibred coproduct

types A+B.

3 Lifting SCCompCs and Fibred Co-

products

In this section, we give a construction of liftings

of SCCompCs with strong fibred coproducts from

given SCCompCs with strong fibred coproducts for

underlying types and posetal fibrations for predi-

cate logic satisfying appropriate conditions.

3. 1 Lifting SCCompCs

Let p : E → B be a SCCompC for underlying

type systems. Let q : P → B be a posetal fibration

with fibred finite products for predicate logic.

Definition 1. We define a category {E | P} by the

pullback of q→ : P→ → B→ along P : E → B→

where the comprehension category P is induced by

p : E → B.



{E | P} P→
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(q→)∗P

P∗(q→) ⌟ q→

P

That is, objects are tuples (X,P,Q) where X ∈
E, P ∈ PpX , Q ∈ P{X}, and Q ≤ π∗

XP ;

and morphisms are tuples (f, g, h) : (X,P,Q) →
(X ′, P ′, Q′) where f : X → X ′, g : P → P ′,

h : Q → Q′, pf = qg, and {f} = qh.

The intuition of this definition is as follows. For

each object (X,P,Q) ∈ {E | P}, X represents a

type Γ ` A in the underlying type system, P rep-

resents a predicate on the context Γ, and Q repre-

sents the conjunction of a predicate on Γ, v : A and

the predicate P (thus Q ≤ π∗
XP is imposed). Note

that P∗(q→) : {E | P} → E is faithful because q is

faithful.

Let {p | q} : {E | P} → P be a functor defined by

cod ◦ (q→)∗P, that is, (X,P,Q) 7→ P . The functor

{p | q} inherits most of the CCompC structure of

p : E → B.
Lemma 2. The functor {p | q} : {E | P} → P
is a split fibration. The cartesian lifting of g :

P ′ → P is given by (qg(X), g, {qg(X)}(Q) ◦ π′) :

((qg)∗X,P ′, π∗
(qg)∗XP ′ ∧ {qg(X)}∗Q) → (X,P,Q)

where π′ is a projection for fibred products.

Lemma 3. The fibration {p | q} : {E | P} → P is a

full comprehension category with unit that admits

strong coproducts.

Proof. The main idea is that the structure in the

CCompC p : E → B can be lifted to {E | P} → P.
Here, we only show the definition of (object parts

of) fibred terminal objects 1 : P → {E | P}, the

comprehension functor {−} : {E | P} → P, and co-

products
∐

(X,P,Q) : {E | P}Q → {E | P}P for each

(X,P,Q) ∈ {E | P}.
1P = (1qP, P, π∗

1qPP )

{(X,P,Q)} = Q∐
(X,P,Q)

(Y,Q,R) = (
∐
X

Y, P, (κ−1)∗R)

The rest of the proof is omitted.

The existence of products in {p | q} requires ad-

ditional conditions.

Lemma 4. If q : P → B has fibred exponentials

and p-products (in addition to fibred finite prod-

ucts), then {p | q} : {E | P} → P admits products.

Proof. We define
∏

(X,P,Q) : {E | P}Q → {E | P}P

by ∏
(X,P,Q)

(Y,Q,R) =
(∏

X

Y, P, π∗∏
X Y P∧∏

π∗∏
X Y

X

σ∗∏
X Y,X(π∗

π∗
X

∏
X Y Q ⇒ {ϵπ

∗
X⊣

∏
X

Y }∗R)
)
.

Q ∈ P{X} R ∈ P{Y }

P{π∗
X

∏
X Y }

P{π∗∏
X Y

X}

P{
∏

X Y }

π∗
π∗
X

∏
X Y {ϵ

π∗
X⊣

∏
X

Y
}∗

σ∗∏
X Y,X

∏
π∗∏

X Y
Xπ∗

π∗∏
X Y

X a

Then, this gives products in {p | q} but we omit the

lengthy proof.

As a result, we get a lifting of SCCompCs over p :

E → B.

{E | P} E

P B

{p|q}

P∗(q→)

p

q

Theorem 5. If p : E → B
is a SCCompC and q :

P → B is a fibred ccc

that has p-products, then

{p | q} : {E | P} → P
is a SCCompC. Moreover,

(P∗(q→), q) : {p | q} → p is a morphism of SC-

CompCs, i.e., a split fibred functor that preserves

the CCompC structure strictly.

Proof. By Lemma 3 and Lemma 4. A terminal ob-

ject in P exists because B has a terminal object and

q : P → B has fibred terminal objects. It is almost

obvious that (P∗(q→), q) preserves the structure of

CCompCs.

Example 6. Consider the simple fibration sSet :

s(Set) → Set and the subobject fibration subSet :

Sub(Set) → Set (see [10, §1.3]). Objects in

{s(Set) | Sub(Set)} are tuples ((I,X), P,Q)

where (I,X) ∈ s(Set), P ⊆ I, and Q ⊆ P × X ⊆
I × X, and morphisms are those in s(Set) that

preserve predicates. In {sSet | subSet} : {s(Set) |
Sub(Set)} → Sub(Set), products are given by∏

((I,X),P,Q)

((I ×X,Y ), Q,R)

=
(
(I,X ⇒ Y ), P,

{(i, f) ∈ I × (X ⇒ Y ) | i ∈ P ∧ ∀x ∈ X,

(i, x) ∈ Q =⇒ ((i, x), f(x)) ∈ R}
)
. (1)



Example 7. Let erel : ERel → Set be the fi-

bration of endorelations defined by change-of-base

from Sub(Set) → Set along the functor X 7→
X × X. The fibration erel is a fibred ccc and

has products (i.e. right adjoints of reindexing func-

tors that satisfy the BC condition for each pull-

back square). Therefore, erel has p-products for

any comprehension category with unit p. If we

apply Theorem 5 to erel and the simple fibration

sSet : s(Set) → Set, then products are defined

similarly to Example 6.

Example 8. Consider the family fibration famSet :

Fam(Set) → Set [10, Def 1.2.1] and the subobject

fibration subSet : Sub(Set) → Set. Objects in

{Fam(Set) | Sub(Set)} are tuples ((I,X), P,Q)

where (I,X) ∈ Fam(Set), P ⊆ I, and Q ⊆∐
i∈P Xi ⊆

∐
i∈I Xi. Note that subsets Q ⊆∐

i∈I Xi have a one-to-one correspondence with

families of subsets (Qi ⊆ Xi)i∈I when we define

Qi = ι∗i (Q) where ιi : Xi →
∐

i∈I Xi is the i-

th injection. So, we often identify Q with the

family of subsets Qi ⊆ Xi. We get products

in {famSet | subSet} : {Fam(Set) | Sub(Set)} →
Sub(Set) by modifying (1) for dependent func-

tions.

3. 2 Lifting Fibred Coproducts

A sufficient condition for {p | q} : {E | P} → P to

have strong fibred coproducts is given by the follow-

ing lemma, which is analogous to [9, Prop. 4.5.8].

Lemma 9. If (1) p : E → B is a CCompC that has

strong fibred coproducts (2) for each X,Y ∈ EI ,

X ′, Y ′ ∈ EI′ , u : I → I ′, and pair of cartesian

liftings f : X → X ′ and g : Y → Y ′ over u, the

following two squares are pullbacks

{X} {X + Y } {Y }

{X ′} {X ′ + Y ′} {Y ′}

⌟
{ι1}

{f} {f+g}

{ι2}

{g}
⌞

{ι1} {ι2}

(3) q : P → B is a fibred distributive category

(4) for each X,Y ∈ EI and Z ∈ E{X+Y }, q has

cocartesian liftings of {ι1} : {X} → {X + Y },
{ι2} : {Y } → {X + Y }, {{ι1}(Z)} : {{ι1}∗Z} →
{Z}, and {{ι2}(Z)} : {{ι2}∗Z} → {Z} that sat-

isfy the BC condition for each pullback squares

and Frobenius, then {p | q} : {E | P} → P has

strong fibred coproducts, and the fibred functor

(P∗(q→), q) : {p | q} → p strictly preserves fibred

coproducts.

Proof. We define fibred coproducts by (X,P,Q) +

(Y, P,R) = (X + Y, P, {ι1}!Q ∨ {ι2}!R). We omit

the rest of the proof.

Note that if q is fibred bicartesian closed, then q

is a fibred distributive category.

Example 10. Consider sSet : s(Set) → Set

and subSet : Sub(Set) → Set (recall Exam-

ple 6). This combination satisfies four con-

ditions in Lemma 9. Fibred coproducts in

{s(Set) | Sub(Set)} → Sub(Set) are defined as

follows.

((I,X), P,Q) + ((I, Y ), P,R)

= ((I,X + Y ), P, {(i, x) | (i, x) ∈ Q ∨ (i, x) ∈ R})

4 Lifting Monads on SCCompCs

Suppose we have a SCCompC p : E → B and

a posetal fibration q : P → B as ingredients for

{p | q} : {E | P} → P in Theorem 5. We ex-

plain how to construct a fibred monad on {p | q} :

{E | P} → P from monads on p and q.

First, we assume that a monad T on B and a

fibred monad T̂ on p : E → B are given. These

monads are intended to represent the same compu-

tational effects in underlying type systems, but T

is more “primitive” than T̂ , and T̂ is induced from

T in some natural way. For example, we can use

the maybe monad or the powerset monad on Set as

T and define T̂ by (I,X) 7→ (I, TX) on the simple

fibration s(Set) → Set. In such a situation, we of-

ten have an oplax monad morphism (Definition 11)

θ : {T̂ (−)} → T{−}. Intuitively, θ extends the ac-

tion of T̂ on types to contexts, just like strengths of

strong monads. We also need a lifting Ṫ of T along

q : P → B to specify a mapping from predicates

on values in X ∈ B to predicates on computations

in TX [1]. Given all these ingredients and some

additional conditions, we define a fibred monad on

{p | q} : {E | P} → P, which is a lifting of the fibred

monad T̂ on p : E → B.
Definition 11 (oplax monad morphism). Let C,D
be categories, F : C → D be a functor, and

(S, ηS , µS), (T, ηT , µT ) be monads on C and D, re-
spectively. A natural transformation θ : FS → TF

is an oplax monad morphism if θ respects units and

multiplications.



FX

FSX TFX

FηS
X

ηT
FX

θX

FS2X TFSX T 2FX

FSX TFX

θSX

FµS
X

TθX

µT
FX

θX

Theorem 12. Let T be a monad on B, T̂ be a fi-

bred monad on p : E → B in the 2-category FibB of

fibrations over B, θ : {T̂ (−)} → T{−} be an oplax

monad morphism, and Ṫ be a fibred lifting [1] of T

along q : P → B. If
π∗
T̂XP ∧ θ∗X ṪQ ≤ θ∗X Ṫ (π∗

XP ∧Q) (2)

holds for each X ∈ E, P ∈ PpX and Q ∈ P{X}, then

there exists a fibred monad S on {p | q} : {E | P} →
P in FibP such that the fibred functor {p | q} → p

in Theorem 5 is a fibred monad morphism from S

to T̂ .

Proof. We define S(X,P,Q) = (T̂X, P, π∗
T̂X

P ∧
θ∗ṪQ). Then the monad structure of T̂ lifts to

S. The assumption (2) is required to prove that S

is fibred.

P θ∗ṪQ ṪQ

B {T̂X} T{X}
q

θ(ṪQ)

θ

Example 13. Any strong monad T on a CCC B
gives rise to a split fibred monad T̂ on the simple

fibration sB : s(B) → B (actually, there is a one-to-

one correspondence [10, Ex.2.6.10]). The monad T̂

is defined by (I,X) 7→ (I, TX). An oplax monad

morphism θ : I × TX → T (I ×X) is given by the

strength.

Now consider the case where B = Set. Since

the strength for the monad T on Set is given

uniquely [17, Proposition 3.4], we can prove that (2)

holds for any fibred lifting of T along the subobject

fibration subSet : Sub(Set) → Set.

Let T be the maybe monad (−)+{∗}. There are

two fibred liftings of T :

Ṫ1(P ⊆ I) = (P + {∗} ⊆ I + {∗})
Ṫ2(P ⊆ I) = (P ⊆ I + {∗})

for each (P ⊆ I) ∈ Sub(Set). The lifting Ṫ1

corresponds to partial correctness, and Ṫ2 corre-

sponds to total correctness. The fibred monads on

{sSet | subSet} defined in Theorem 12 from Ṫ1 and

Ṫ2 are given by

((I,X), P,Q)

7→
(
(I,X + {∗}), P,

{(i, x) | (i ∈ P ∧ x = ∗) ∨ (i, x) ∈ Q}
)

((I,X), P,Q)

7→
(
(I,X + {∗}), P, {(i, x) | (i, x) ∈ Q}

)
respectively. Here, we leave the left/right injection

of coproducts implicit.

Example 14. For each monad T on Set, we

have a split fibred monad on the family fibra-

tion Fam(Set) → Set defined by T̂ (I,X) =

(I, T ◦ X). We have an oplax monad morphism

θ :
∐

i∈I TXi → T
∐

i∈I Xi defined by the cotu-

pling [(Tιi)i∈I ] :
∐

i∈I TXi → T
∐

i∈I Xi where

ιi : Xi →
∐

i∈I Xi is the i-th injection. The con-

dition (2) holds for any fibred lifting of T along

the subobject fibration Sub(Set) → Set. More-

over, we have ι∗i θ
∗ṪQ = Ṫ ι∗iQ for each Q ∈

Sub(Set)⨿
i∈I Xi, so the monad in Theorem 12 is

given by(
(I,X), P, (Qi ⊆ Xi)i∈I

)
7→

(
(I, T ◦ X), P, (ṪQi ⊆ TXi)i∈I

)
.

5 Soundness

We consider a concrete dependent refinement

type system with computational effects and define

sound semantics to show that the SCCompC de-

fined in Theorem 5 has sufficient structures for de-

pendent refinement types. Here, we consider two

type systems. One is an underlying type system

that is a fragment of EMLTT [2–4]. The other is

a refinement of the underlying type system that

has refinement types {v : A | p} and a subtyping

relation Γ ` A <: B induced by logical implica-

tion. The two type systems share a common syn-

tax for terms while types are more expressive in

the refinement type system. We consider liftings

of fibred adjunction models to interpret the refine-

ment type system. Here, Theorem 12 can be used

to obtain a lifting of fibred adjunction models via

Eilenberg-Moore construction. We prove a sound-

ness theorem that claims if a term is well-typed

in the refinement type system, then the interpreta-

tion of the term has a lifting along the morphism

of CCompCs defined in Theorem 5.



5. 1 Underlying Type System

We define the underlying dependent type sys-

tem by a slightly modified version of a fragment

of EMLTT [2–4]. We remove some of the types

and terms from the original for simplicity. We pa-

rameterize our type system with a set of base type

constructors (ranged over by b) and a set of value

constants (ranged over by c) for convenience.

We define value types (A,B, . . . ), computation

types (C,D, . . . ), contexts (Γ, . . . ), value terms

(V,W, . . . ), and computation terms (M,N, . . . ) as

in Fig. 3.

We implicitly assume that variables in Γ are mu-

tually different. We use many type annotations in

the syntax of terms for a technical reason, but we

might omit them if they are clear from the context.

We define substitution A[V/x], C[V/x], W [V/x],

and M [V/x] as usual.

For each type constructor b, let arg(b) be a closed

value type of the argument of b. We write b : A →
Type if A = arg(b). For each value constant c, let

ty(c) be a closed value type of c.

We have several kinds of judgements: well-

formed contexts ` Γ; well-formed (value or com-

putation) types Γ ` A, Γ ` C; well-typed (value

or computation) terms Γ ` V : A, Γ ` M : C;

and definitional equalities for contexts, types and

terms ` Γ1 = Γ2, Γ ` A = B, Γ ` C = D,

Γ ` V = W : A, Γ ` M = N : C.

Typing rules are basically the same as EMLTT.

Rules for base type constructors and value con-

stants are shown in Fig. 4

Semantics. We use fibred adjunction models to

interpret terms and types. We adapt the definition

for our fragment of EMLTT as follows.

Definition 15 (Fibred adjunction models). A fi-

bred adjunction model is a fibred adjunction F a
U : r → p where p : E → B is a SCCompC with

strong fibred coproducts and r : C → B is a fibra-

tion with p-products.

The Eilenberg-Moore fibration of a CCompC p :

E → B inherits products in p [2, Theorem 4.3.24]

and thus gives an example of fibred adjunction

models.

Lemma 16. Given a SCCompC p : E → B with

strong fibred products and a split fibred monad T

on p, then the Eilenberg-Moore adjunction of T is

a fibred adjunction model.

We assume that a fibred adjunction model F a

U : r → p between p : E → B and r : C → B is given

and that interpretations of base type constructorsJbK ∈ E and value constants JcK ∈ E1(1, X) (for

some X ∈ E1) are given. We define a partial inter-

pretation J−K of the following form for raw syntax.

E C

B
p

F

r
U

a

JΓK ∈ B JΓ;AK ∈ EJΓK JΓ;CK ∈ CJΓKJΓ;V K ∈ EJΓK(1JΓK, A) for some AJΓ;MK ∈ EJΓK(1JΓK, UC) for some C ∈ C
Most of the definition of J−K are the same as [2].

For base type constructors b and value constants c,

we define J−K as follows.JΓ; bA(V )K = (sJΓ;V K)∗{!JΓK(J�;AK)}∗JbKJΓ; cAK = !∗JΓKJcK
Here, left-hand sides are defined if right-hand sides

are defined.

Proposition 17 (Soundness). Assume that JbK ∈
E{J⋄;AK} holds for each b : A → Type such thatJ�;AK is defined, and JcK ∈ E1(1, J�; ty(c)K) holds

if J�; ty(c)K ∈ E1 is defined. Interpretations J−K
of well-formed contexts and types and well-typed

terms are defined. If two contexts, types, or terms

are definitionally equal, then their interpretations

are equal.

5. 2 Predicate Logic

We define syntax for logical formulas by

p = > | p ∧ q | p ⇒ q | ∀x : A.p | V =A W | a(V )

where a ranges over predicate symbols. Here, we

added > and V =A W for typing rule for the unique

value of the unit type and variables of base types

(i.e. for selfification [18]), respectively, which we de-

scribe later. However, there is a large amount of

freedom to choose the syntax of logical formulas.

The least requirement here is that logical formulas

can be interpreted in a posetal fibration q : P → B,
and interpretations of logical formulas admit se-

mantic weakening, substitution, and conversion in

the sense of [2, Proposition 5.2.4, 5.2.6]. So, we can

almost freely add or remove logical connectives and

quantifiers as long as q : P → B admits them.

We define a standard judgement of well-

formedness for logical formulas. Some of the rules

for well-formedness are shown in Fig. 5

Logical formulas are interpreted in the fibration

q : P → B. We assume that interpretation JaK ∈



A := 1 | bA(V ) | Σx:A.B | UC | A+B

C := FA | Πx:A.C

Γ := � | Γ, x : A

V := x | ∗ | cA | 〈V,W 〉(x:A).B | thunk M | inlA+B V | inrA+B V

M := return V | M to x : A inC N | forceC V | λx : A.M | M(V )(x:A).C |
pm V as 〈x : A, y : B〉 inz.C M | case V ofz.C (inl (x : A) 7→ M, inr (y : B) 7→ N)

Fig. 3 Syntax of the underlying type system.

` Γ � ` ty(c)

Γ ` cty(c) : ty(c)

b : A → Type � ` A Γ ` V : A

Γ ` bA(V )

b : A → Type � ` A Γ ` V = W : A

Γ ` bA(V ) = bA(W )

Fig. 4 Some typing rules for the underlying

type system.

Γ ` V : A Γ ` W : A

Γ ` V =A W : Prop

a : A → Prop � ` A Γ ` V : A

Γ ` a(V ) : Prop

Fig. 5 Some rules for well-formed predicates.

P{J⋄;AK} for each predicate symbol a : A → Prop is

given. The interpretation JΓ ` pK ∈ PJΓK is stan-

dard and defined inductively for each well-formed

formulas. For example:JΓ ` V =A W K
= (sJΓ;V K)∗(s(π∗JΓ;AKJΓ;W K))∗Eq(>{JΓ;AK})JΓ ` a(V )K
= s(JΓ;V K)∗{!JΓK(J�;AK)}∗JaK

where a : A → Prop is a predicate symbol and s is

the bijection defined in §2.

5. 3 Refinement Type System

We refine the underlying type system by adding

predicates to base types and the unit type. From

now on, we use subscript Au for types in the under-

lying type system to distinguish them from types

in the refinement type system.

A := {v : bAu(V ) | p}
∣∣ {v : 1 | p}

∣∣ Σx:A.B
∣∣

UC | A+B

C := FA | Πx:A.C

Γ := � | Γ, x : A

We use the same definition of terms as the under-

lying type system and the same set of base type

constructors and value constants. Argument types

of base type constructors b : Au → Type are also

the same, but types ty(c) assigned to value con-

stants c are redefined as refinement types. Given

a type A (or C) in the refinement type system, we

define its underlying type |A| (or |C|) by induction

where predicates are eliminated in the base cases.

|{v : bAu(V ) | p}| = bAu(V ) |{v : 1 | p}| = 1

Underlying contexts |Γ| are also defined by | � | = �
and |Γ, x : A| = |Γ|, x : |A|.
Judgements in the refinement type system are as

follows. We have judgements for well-formedness

or well-typedness for contexts, types and terms in

the refinement type system, which are denoted in

the same way as the underlying type system. We

do not consider definitional equalities for terms be-

cause they are the same as the underlying type sys-

tem. Instead, we add judgements for subtyping be-

tween types and contexts. They are denoted by

` Γ1 <: Γ2 for context, Γ ` A <: B for value types,

and Γ ` C <: D for computation types.

Most of term and type formation rules are simi-

lar to the underlying type system. We listed some

of the non-trivial modifications of typing rules in

Fig. 6. We add typing rules for {v : bBu(V ) | p}
and {v : 1 | p}. Subtyping for these types are de-

fined by judgements Γ; v : Au | p ` q for logical

implication. Here, Γ; v : Au | p ` q means “as-

sumptions in Γ and p implies q” where p and q

are well-formed formulas in the context |Γ|, v : Au.

We do not specify derivation rules for the judge-

ment Γ; v : Au | p ` q but assume soundness of the

judgement (explained later). We allow “selfifica-



tion” [18] for variables of base types. Subtyping for

Σx:A.B, UC, FA, and Πx:A.C are defined covari-

antly except the argument type A of Πx:A.C, which

is contravariant. We have the rule of subsumption.

Value constants are typed with a refined type as-

signment ty(c). The unique value ∗ of the unit type

has type {v : 1 | >}.
Lemma 18. If we eliminate predicates in the re-

finement types from well-formed contexts, types

and terms, then we get well-formed contexts, types

and terms of the underlying type system.

• If ` Γ, then ` |Γ|. If Γ ` A, then |Γ| ` |A|. If

Γ ` C, then |Γ| ` |C|.
• If ` Γ1 <: Γ2, then ` |Γ1| = |Γ2|. If Γ ` A <:

B, then |Γ| ` |A| = |B|. If Γ ` C <: D, then

|Γ| ` |C| = |D|.

Proof. By induction on the derivation of judge-

ments. Each typing rule in the refinement type

system has a corresponding rule in the underlying

system.

Example 19. We can express conditional branch-

ing using the elimination rule of the fibred co-

product type 1 + 1. For example, assume we

have a base type constructor int : 1 → Type

for integers and a value constant for comparison:

(≤) : U(Πx:int.Πy:int.F ({v : 1 | x ≤ y} +

{v : 1 | x > y})). We can define if x ≤
y then M else N to be a syntax sugar for (x ≤′

y) to z in (case z of (inl v 7→ M, inr v 7→ N))

where (≤′) = force (≤). Note that M and N are

typed in contexts that have v : {v : 1 | x ≤ y}
or v : {v : 1 | x > y} depending on the result of

comparison.

5. 4 Semantics

Definition 20 (lifting of fibred adjunction mod-

els). Suppose that we have two fibred adjunction

models F a U : q → p between p : E → B and

q : C → B and Ḟ a U̇ : s → r between r : U → P
and s : D → P. The fibred adjunction model

Ḟ a U̇ is a lifting of F a U if there exists func-

tors u : U → E, v : D → C, and t : P → B such

that these functors strictly preserve all structures

of Ḟ a U̇ to those of F a U . That is, (u, t) : r → p

and (v, t) : s → q are split fibred functors, the pair

of fibred functor (u, t) and (v, t) is a map of adjunc-

tions in the 2-category Fib, (u, t) strictly preserves

the CCompC structure and fibred coproducts, and

(v, t) maps r-products to p-products in the strict

sense.

We assume that a lifting of fibred adjunction

models is given as follows.

E C

B
p

F

U

a {E | P} D

P{p|q}

Ḟ

U̇

a

{E | P} E

P B

u

{p|q} p

q

D C

P B

v

q

(3)

Here, we assume more than just a lifting of fi-

bred adjunction models by requiring the specific

SCCompC {p | q} with strong fibred coproducts,

and the split functor (u, q) : {p | q} → p defined in

Theorem 5 and Lemma 9. The underlying fibred

adjunction model F a U is used for the under-

lying type system in §5. 1, and q : P → B is for

predicate logic in §5. 2. One way to obtain such

liftings of fibred adjunction models is to apply the

Eilenberg-Moore construction to the monad mor-

phism in Theorem 12, but in general we do not

restrict C and D to be Eilenberg-Moore categories.

We further assume that q has p-equalities to inter-

pret logical formulas of the form V =A W .

We define partial interpretation of refinement

types JΓK ∈ P, JΓ;AK ∈ {E | P}JΓK, and JΓ;CK ∈
DJΓK similarly to the underlying type system but

with the following modification. Here, we make use

of the definition of {E | P}.JΓ; {v : b(V ) | p}K
=

(J|Γ|; b(V )K, JΓK,
π∗J|Γ|;b(V )KJΓK ∧ J|Γ|, v : b(V ) ` pK)JΓ; {v : 1 | p}K

=
(J|Γ|; 1K, JΓK, π∗J|Γ|;1KJΓK ∧ J|Γ|, v : 1 ` pK)

For each (X,P,Q), (X ′, P ′, Q′) ∈ {E | P}, we de-

fine a semantic subtyping relation (X,P,Q) <:

(X ′, P ′, Q′) by the conjunction of X = X ′, P = P ′,

and Q ≤ Q′. In other words, we have (X,P,Q) <:

(X ′, P ′, Q′) if and only if there exists a morphism

(idX , idP , h) : (X,P,Q) → (X ′, P ′, Q′) that is

mapped to identities by u : {E | P} → E and

{p | q} : {E | P} → P.
Lemma 21. • If JΓK is defined, then J|Γ|K is de-

fined and equal to qJΓK.
• If JΓ;AK is defined, then J|Γ|; |A|K is defined

and equal to uJΓ;AK.
• If JΓ;CK is defined, then J|Γ|; |C|K is defined

and equal to vJΓ;CK.



b : Au → Type ` Γ |Γ| ` bAu(V )

|Γ|, v : bAu(V ) ` p : Prop

Γ ` {v : bAu(V ) | p}

` Γ |Γ| ` bAu(V ) = bAu(W )

Γ; v : bAu(V ) | p ` q

Γ ` {v : bAu(V ) | p} <: {v : bAu(W ) | q}

` Γ1, x : {v : bAu(V ) | p},Γ2

Γ1, x : {v : bAu(V ) | p},Γ2 ` x : {v : bAu(V ) | v = x}
` Γ � ` ty(c)

Γ ` c|ty(c)| : ty(c)

Γ ` A2 <: A1

Γ, x : A1 ` C1 Γ, x : A2 ` C1 <: C2

Γ ` Πx:A1.C1 <: Πx:A2.C2

Γ2 ` V : A

` Γ1 <: Γ2 Γ1 ` A <: B

Γ1 ` V : B

` Γ

Γ ` ∗ : {v : 1 | >}

` Γ |Γ|, v : 1 ` p : Prop

Γ ` {v : 1 | p}
` Γ Γ; v : 1 | p ` q

Γ ` {v : 1 | p} <: {v : 1 | q}

Fig. 6 Some typing rules for the refinement type system.

Proof. By simultaneous induction. The case of

{v : Au | p} is obvious, and other cases follow from

the definition of liftings of fibred adjunction mod-

els.

We do not specify syntactic derivation rules for

judgement for logical implication Γ; v : Au | p ` q.

Instead, we assume soundness of Γ; v : Au | p ` q

in the following sense: π∗J|Γ|;AuKJΓK ∧ J|Γ|, v : Au `
pK ≤ J|Γ|, v : Au ` qK holds in PJ|Γ|,v:AuK. For ex-

ample, we can define a derivation rule for logical

implication Γ; v : Au | p ` q from derivation rules

for predicate logic Γu | p ` q (“p implies q in the

context Γu”). This is done by collecting predicates

in context Γ byL�M = >

LΓ, x : AM = {LΓM ∧ p[x/v] if A = {v : Au | p}LΓM otherwise
and defining a derivation rule for judgement for log-

ical implication Γ; v : Au | p ` q by |Γ|, v : Au |LΓM ∧ p ` q. If the derivation rules for predicate

logic Γu | p ` q is sound (i.e., Γu | p ` q impliesJΓu ` pK ≤ JΓu ` qK), then so are the derivation

rule for Γ; v : Au | p ` q. This technique is used in,

e.g., [27].

Theorem 22 (Soundness). Assume that Γ; v :

Au | p ` q is sound in the sense described above,JbK ∈ E{J⋄;AK} holds for each b : A → Type if J�;AK
is defined, and JcK ∈ {E | P}1(1, J�; ty(c)K) holds ifJ�; ty(c)K ∈ {E | P}1 is defined. Then we have the

following.

• If ` Γ, then JΓK ∈ P is defined. If Γ ` A, thenJΓ;AK ∈ {E | P}JΓK is defined. If Γ ` C, then

JΓ;CK ∈ DJΓK is defined.

• If ` Γ1 <: Γ2, then JΓ1K ≤ JΓ2K in a fibre

category of P.
• If Γ ` A <: B, then JΓ;AK <: JΓ;BK. If

Γ ` C <: D, then U̇JΓ;CK <: U̇JΓ;DK.
• If Γ ` V : A, then there exists a liftingJΓ;V K : 1JΓK → JΓ;AK above J|Γ|;V K along

u : {E | P} → E. If Γ ` M : C, then there

exists a lifting JΓ;MK : 1JΓK → JΓ;CK aboveJ|Γ|;MK along u : {E | P} → E.
Since we have the bijection

s : {E | P}P (1P, (X,P,Q)) →
{f : P → Q | π(X,P,Q) ◦ f = idP }

for each (X,P,Q) ∈ {E | P}, we obtain liftings of

interpretations of terms along q : P → B.
Proposition 23. If Γ ` V : A, then sJ|Γ|;V K :J|Γ|K → {J|Γ|;AK} has a lifting sJΓ;V K : JΓK →
{JΓ;AK} along q : P → B (and similarly for compu-

tation terms Γ ` M : C).

Proposition 24. Assume the lifting of fibred ad-

junction models is given by applying the Eilenberg-

Moore construction to a lifting of monads in Theo-

rem 12. If Γ ` M : FA, then θ ◦ sJ|Γ|;MK : J|Γ|K →
T{J|Γ|;AK} has a lifting of type JΓK → Ṫ{JΓ;AK}
along q : P → B.

6 Toward Recursion in Refinement

Type Systems

We consider how to deal with general recur-

sion in dependent refinement type systems. In [4],

Ahman used a specific model of the fibration

CFam(CPO) → CPO of continuous families of ω-



cpos to extend EMLTT with recursion. However,

we need to identify the structure that character-

izes recursion to lift recursion from the underlying

type system to dependent refinement type systems.

So, we consider a generalization of Conway opera-

tors [22] and prove the soundness of the underly-

ing and the dependent refinement type system ex-

tended with typing rules for recursion. This exten-

sion enables us to reason about partial correctness

of general recursion.

Unfortunately, we still do not know an exam-

ple of liftings of Conway operators, although (1)

CFam(CPO) → CPO does have a Conway oper-

ator and (2) the soundness of the refinement type

system with recursion holds under the existence of

a lifting of Conway operators. We leave this prob-

lem for future work.

6. 1 Conway Operators

The notion of Conway operators for cartesian

categories is defined in [22]. We adapt the defi-

nition for comprehension categories with unit. We

allow partially defined Conway operators because

we need those defined only on interpretations of

computation types.

Definition 25 (Conway operator for comprehen-

sion categories with unit). Let p : E → B be a

comprehension category with unit and K ⊆ E be

a collection of objects. A Conway operator for the

comprehension category with unit p defined on K is

a family of mappings (−)‡ : EI(X,X) → EI(1I,X)

for each X ∈ EI ∩K such that the following condi-

tions are satisfied.

(Naturality) For each X ∈ K, f ∈ EI(X,X),

and u : J → I, u∗f‡ = (u∗f)‡.

(Dinaturality) For each X,Y ∈ K, f ∈
EI(X,Y ), and g ∈ EI(Y,X), (g ◦ f)‡ = g ◦
(f ◦ g)‡.

(Diagonal property) For each X ∈ K and

f ∈ E{X}(π
∗
XX,π∗

XX), if π∗
XX ∈ K, then

(ϕ(f‡))‡ = (ϕ(δ∗X(ϕ−1(f))))‡ holds where ϕ :

E{X}(1{X}, π∗
XX) → EI(X,X) is the isomor-

phism defined in §2.
Lemma 26. Let B be a cartesian category. There

is a bijective correspondence between the follow-

ing. (1) Conway operators (−)† on the cartesian

category B. (2) Conway operators (−)‡ on the sim-

ple comprehension category s(B) → B→ that are

defined totally on s(B).

Γ ` C Γ, x : UC ` M : C

Γ ` µx : UC.M : C

Γ ` C = D Γ, x : UC ` M = N : C

Γ ` µx : UC.M = µx : UD.N : C

Γ ` C Γ, x : UC ` M : C

Γ `M [thunk (µx : UC.M)/x]

= µx : UC.M : C

Γ ` C Γ, x : UC, y : UC ` M : C

Γ `µx : UC.µy : UC.M

= µx : UC.M [x/y] : C

Fig. 7 Typing rules for general recursion.

Example 27. Let K ⊆ CFam(CPO) be a col-

lection of objects defined by K = {(I,X) ∈
CFam(CPO) | ∀i ∈ I,Xi has a least element}.
For each (I,X) ∈ K and vertical morphism f =

(idI , (fi)i∈I) : (I,X) → (I,X), we define f‡ =

(idI , (∗ 7→ lfpfi)i∈I) : (I, 1) → (I,X). Then (−)‡ is

a Conway operator, which is implicitly used in [4].

6. 2 Recursion in the Underlying Type

System

Syntax. We add recursion µx : UC.M to the

syntax of computation terms. We also add typing

rules in Fig. 7.

Semantics. Assume we have a fibred adjunc-

tion model F a U : r → p where p : E → B and

r : C → B. We need a Conway operator defined on

objects in {JΓ;UCK | Γ ` C} ⊆ E. However, here is

a circular definition because JΓ;UCK may contain

terms of the form µx : UD.M , whose interpreta-

tions are defined by the Conway operator. So, we

use a slightly stronger condition.

Definition 28. A Conway operator defined on

computation types is a Conway operator defined on

K ⊆ E such that K satisfies the following condi-

tions. (1) UFX ∈ K holds for each X ∈ E. (2)∏
X Y ∈ K holds for eachX ∈ E and Y ∈ K∩E{X}.

(3) For each X ∈ K and Y ∈ E, X ∼= Y implies

Y ∈ K.

Given a Conway operator defined on computa-

tion types, we interpret µx : UC.M by JΓ;µx :

UC.MK = (ϕ(JΓ, x : UC;MK))‡ : 1JΓK → UJΓ;CK.
Proposition 29. Soundness (Proposition 17)



holds for the underlying type system extended with

general recursion.

Proof. By induction. We can prove that the given

Conway operator is defined on {JΓ;UCK | Γ ` C} ⊆
E by [2, Proposition 4.1.14].

6. 3 Recursion in Refinement Type Sys-

tem

Syntax. We add the typing rule for Γ `
µx:UC.M : C in Fig. 7 to the refinement type sys-

tem. Here, recall that we remove definitional equal-

ities when we consider the refinement type system.

Semantics. We consider liftings of Conway op-

erators to interpret recursion in the refinement type

system.

Definition 30. Let p : E → B and q : D → A be

comprehension categories with unit, (u, v) : p → q

be a morphism of comprehension categories with

unit. Assume q has a Conway operator (−)‡ defined

on K ⊆ D. A lifting of the Conway operator (−)‡

along (u, v) is a Conway operator (−)♮ for p defined

on L ⊆ E such that uL ⊆ K and u(f ♮) = (uf)‡ for

each f ∈ EI(X,X) where X ∈ L.

Lemma 31. Let (u, v) be a morphism of CCom-

pCs defined in Theorem 5. Assume p : E → B
has a Conway operator (−)‡ defined on K ⊆
E. The CCompC {E | P} → P has a lifting of

the Conway operator defined on L ⊆ {E | P} if

uL ⊆ K and for each (X,P,Q) ∈ L and f ∈
{E | P}P ((X,P,Q), (X,P,Q)), {f‡} has a lifting

π∗
1pXP → Q along q : P → B.

Proof. Let (f, idP , h) : (X,P,Q) → (X,P,Q)

be a morphism in {E | P} where (X,P,Q) ∈ L.

We define a Conway operator by (f, idP , h)
♮ =

(f‡, idP , h
′) : (1pX, P, π∗

1pXP ) → (X,P,Q) where

h′ is a lifting of {f‡}.

We assume that a lifting of fibred adjunction

models (3) together with a lifting of Conway op-

erators defined on computation types is given.

Theorem 32. Soundness (Theorem 22) holds for

the refinement type system extended with general

recursion.

Consider the fibration CFam(CPO) → CPO

for the underlying type system with recursion.

To support recursion in our refinement type sys-

tem, a natural choice of a fibration for predi-

cate logic is the fibration of admissible subsets

Adm(CPO) → CPO because the least fixed point

of an ω-continuous function f : X → X is given by

lfpf =
∨

n fn(⊥). However, we cannot apply Theo-

rem 5 because Adm(CPO) → CPO is not a fibred

ccc [9, §4.3.2]. Specifically, it is not clear whether

this combination admits products. We believe that

our approach is quite natural but leave giving con-

crete examples of liftings of Conway operators for

future work.

7 Related Work

Dependent refinement types. Historically,

there are two kinds of refinement types. One is

datasort refinement types [7], which are subsets of

underlying types but not necessarily dependent.

The other is index refinement types [28]. A typ-

ical example of index refinement types is a type

of lists indexed by natural numbers that represent

the length of lists. Nowadays, the word “refine-

ment types” includes datasort and index refinement

types, and moreover, mixtures of them.

Among a wide variety of the meaning of refine-

ment types, we focus on types equipped with predi-

cates that may depend on other terms [6,20], which

we call dependent refinement types or just refine-

ment types. Dependent refinement types are widely

studied [5, 13, 14, 25], and implemented in, e.g.,

F⋆ [23, 24] and LiquidHaskell [19, 26, 27]. However,

most studies focus on decidable type systems, and

only a few consider categorical semantics.

We expect that some of the existing refinement

type systems are combined with effect systems. For

example, a dependent refinement type system for

nondeterminism and partial/total correctness pro-

posed in [25] contains types for computations in-

dexed by quantifiers Q1Q2 where Q1, Q2 ∈ {∀, ∃}.
Here, Q1 represents may/must nondeterminism,

and Q2 represents total/partial correctness. It

has been shown that Q1Q2 corresponds to four

cartesian liftings of the monad P+((−) + 1) [1, 12].

We conjecture that these liftings are connected by

monad morphisms and hence yield a lattice-graded

monad. Another example is a relational refinement

type system for differential privacy [5]. Their sys-

tem seems to use a graded lifting of the distribution

monad where the lifting is graded by privacy pa-

rameters, as pointed out in [21]. We leave for future

work combining our refinement type system with

effect systems based on graded monads [8, 11,15].



Categorical semantics. Our interpretation of

refinement type systems is based on a morphism of

CCompCs, which is a similar strategy to [16]. The

difference is that our paper focuses on dependent

refinement types and makes the role of predicate

logic explicit by giving a semantic construction of

refinement type systems from given underlying type

systems and predicate logic.

Combining dependent types and computational

effects is discussed in [2–4]. Although their aim

is not at refinement types, their system is a basis

for the design and semantics of our refinement type

system with computational effects.

Semantics for types of the form {v : Au | p} are

characterized categorically as right adjoints of ter-

minal object functors in [10, Chapter 11]. Such

types are called subset types there. They consider

the situation where a given CCompC p : E → B
is already rich enough to interpret {v : Au | p},
and do not aim to interpret refinement type sys-

tems by liftings of CCompCs. Moreover, we can-

not directly use the interpretations in [10] for our

CCompC {E | P} → P because we are not given a

fibration for predicate logic whose base category is

P.
8 Conclusion and Future Work

We provided a general construction of liftings

of CCompCs from combinations of CCompCs and

posetal fibrations satisfying certain conditions.

This can be seen as a semantic counterpart of con-

structing dependent refinement type systems from

underlying type systems and predicate logic. We

identified sufficient conditions for several structures

in underlying type systems (e.g. products, coprod-

ucts, fibred coproducts, fibred monads, and Con-

way operators) to lift to dependent refinement type

systems. We proved the soundness of a dependent

refinement type system with computational effects

with respect to interpretations in CCompCs ob-

tained from the general construction.

We aim to extend our dependent refinement

type system by combining effect systems based on

graded monads [8,11,15]. We hope that this exten-

sion will give us a more expressive framework that

subsumes, for example, dependent refinement type

systems in [5, 25]. Another direction is to define

interpretations of {v : Au | p} in the style of subset

types in [10, Chapter 11]. Lastly, we are interested

in finding more examples of possible combinations

of underlying type systems and predicate logic (es-

pecially for recursion in dependent refinement type

systems but not limited to this) so that we can find

a new practical application of this paper.
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