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Effective Hybrid System Falsification Using Monte Carlo

Tree Search Guided by QB-Robustness

Zhenya Zhang, Deyun Lyu, Paolo Arcaini, Lei Ma, Ichiro Hasuo, Jianjun Zhao

Hybrid system falsification is an important quality assurance method for cyber-physical systems with the

advantage of scalability and feasibility in practice than exhaustive verification. Falsification, given a desired

temporal specification, tries to find an input of violation instead of a proof guarantee. The state-of-the-

art falsification approaches often employ stochastic hill-climbing optimization that minimizes the degree of

satisfaction of the temporal specification, given by its quantitative robust semantics. However, it has been

shown that the performance of falsification could be severely affected by the so-called scale problem, related

to the different scales of the signals used in the specification (e.g., rpm and speed): in the robustness com-

putation, the contribution of a signal could be masked by another one. In this paper, we propose a novel

approach to tackle this problem. We first introduce a new robustness definition, called QB-Robustness,

which combines classical Boolean satisfaction and quantitative robustness. We prove that QB-Robustness

can be used to judge the satisfaction of the specification and avoid the scale problem in its computation.

QB-Robustness is exploited by a falsification approach based on Monte Carlo Tree Search over the structure

of the formal specification. First, tree traversal identifies the sub-formulas for which it is needed to compute

the quantitative robustness. Then, on the leaves, numerical hill-climbing optimization is performed, aiming

to falsify such sub-formulas. Our in-depth evaluation on multiple benchmarks demonstrates that our ap-

proach achieves better falsification results than the state-of-the-art falsification approaches guided by the

classical quantitative robustness, and it is largely not affected by the scale problem.

1 Introduction

Cyber-Physical Systems (CPS) are hybrid sys-

tems that combine physical systems (with continu-

ous dynamics) and digital controllers (that are in-

herently discrete). Being often safety-critical, their

quality assurance is of great importance and widely

investigated by both academia and industry. The

continuous dynamics of hybrid systems leads to in-
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finite search spaces, making their verification often

extremely difficult.

Falsification has been proposed as a more practi-

cally feasible approach that tackles the dual prob-

lem of verification: instead of exhaustively proving

a property, falsification intends to uncover the ex-

istence of its violation with counterexamples. For-

mally, the problem is defined as follows. Given a

model M taking an input signal u and outputting

a signal M(u), and a specification φ (a temporal

formula), the falsification problem consists in find-

ing a falsifying input, i.e., an input signal u such

that the corresponding output M(u) violates φ.

The most pursued and successful approach to

the falsification problem consists in turning it into

an optimization problem; we call it optimization-

based falsification. This is possible thanks to the



quantitative robust semantics of temporal formu-

las [14, 19]. Robust semantics extends the classical

Boolean satisfaction relation v |= φ in the following

way: it assigns a value Jw, φK ∈ R∪{∞,−∞} (i.e.,

robustness) that tells not only whether φ is satis-

fied or violated (by the sign), but also how robustly

the formula is satisfied or violated.

Optimization-based falsification approaches adopt

hill-climbing stochastic optimization strategies to

generate inputs to decrease robustness, which

terminate when they find an input with nega-

tive robustness, i.e., a falsifying input that trig-

gers the violation of the specification φ. Differ-

ent optimization-based falsification algorithms have

been proposed (see [26] for a survey), and mature

tools (e.g., Breach [13] and S-TaLiRo [4]) have also

been developed.

The scale problem is a recognized issue in

optimization-based falsification [21, 40], which

could arise when multiple signals with different

scales are present in the specification. Namely, it

is due to the computation of robust semantics of

Boolean connectives, i.e., the way in which the ro-

bustness values of different sub-formulas are com-

pared and aggregated: such computation is prob-

lematic in the presence of signals that take values

having different order of magnitudes.

Example 1 As very simple example, let us con-

sider the formula φ ≡ 2[0,30](φ1 ∧ φ2), with φ1 ≡
gear < 6 and φ2 ≡ speed < 130. It is appar-

ent that φ1 is always satisfied (in any car model

with 5 gears), and it has been added in the spec-

ification as redundant check.†1 According to ro-

bust semantics, the Boolean connective ∧ is in-

terpreted by minimum ⊓, and the “always” oper-

ator 2[0,30] is interpreted by infimum
d
; the ro-

†1 Note that we built such a trivial example just to

make the scale problem very easy to understand.

However, in general, the scale problem frequently

occurs on much less trivial specifications, as we

will see in the experiments.

bustness of an atomic formula f(x⃗) < c is given

by the margin c − f(x⃗). Therefore, the robust-

ness of φ under the signal (gear , speed), where

gear , speed : [0, 30] → R, is J(gear , speed), φK =d
t∈[0,30]

( (
6− gear(t)

)
⊔
(
130− speed(t)

) )
. Note

that the robustness of φ1 is always in the order of

units, while the robustness of φ2 is, in general, in

the order of tens. It is not difficult to see that, if

both φ1 and φ2 are satisfied, the robustness of φ

will only depend on φ1 (because of the minimum in

the robust semantics of the logical connective). In

this case, we say that φ1 masks φ2. In such a case,

a falsification approach relying on robustness will

be misled during the search. Note that, in this par-

ticular case, the only way to falsify φ is to falsify

φ2, because φ1 is always satisfied; therefore, falsify-

ing this relatively simple formula could be extremely

difficult for state-of-the-art optimization-based fal-

sification approaches (as we will show and have con-

firmed in the experiments).

In this paper, we propose a novel approach to

tackle the scale problem in optimization-based fal-

sification. Our intuition and insights are that we

should try to avoid the comparison of robustness

values of different sub-formulas, so that one sub-

formula does not mask the contribution of another

one.

To achieve this, we first propose a new way of

computing the satisfaction of a formula that com-

bines quantitative robust semantics and Boolean

semantics. We name the new semantics as QB-

Robustness. QB-Robustness, for each type of for-

mula φ, requires selecting a sub-formula φk among

its sub-formulas {φ1, . . . , φK}. For φk, the quan-

titative robust semantics is computed, while for

the other sub-formulas the Boolean semantics is

computed. Therefore, the computation of QB-

Robustness requires identifying a path Σ along

the parse tree of the formula φ, where visited

sub-formulas are those for which the quantita-



tive robustness is computed. We prove that QB-

Robustness, independently of the selected Σ, is

equivalent (in terms of sign and satisfaction) to

the quantitative robust semantics (and also to the

Boolean one).

In general QB-Robustness is a useful tool for

avoiding the scale problem of falsification. By defi-

nition, the quantitative robustness of different sub-

formulas is never compared, so removing the main

cause of the scale problem. It would then make

sense to use it for guiding the optimization-based

falsification process. However, QB-Robustness re-

quires to choose a particular sequence Σ of sub-

formulas for which to compute the quantitative ro-

bustness. It is relatively easy to show that some of

them provide a better guidance than others to the

falsification search. Considering the previous exam-

ple, if Σ contains φ1, we can encounter the prob-

lem that the quantitative robustness of φ1 would

not provide any guidance (i.e., no big variations

in the robustness values would be observed). On

the other hand, if Σ contains φ2, the quantitative

robustness would have larger variations, providing

more effective guidance to the search.

Then, the key problem is how to select the best

Σ, that enables the hill-climbing optimization used

in falsification to be more effective. In general, al-

though it is often difficult to know the best Σ in

advance, it is still possible to learn it by observing

sampling results using different Σ. Based on this

intuition, we propose a novel falsification approach

that identifies the sequences Σ that is more likely

to be efficient, and uses them in the new falsifica-

tion trials. Our approach could be seen as an in-

stantiation of the classical Monte Carlo Tree Search

(MCTS) method [8, 28], which is able to efficiently

tackle the exploration-exploitation tradeoff. In our

context, exploration consists in incrementally con-

structing the tree that represents all the possible

sequences, and exploitation consists in selecting the

best Σ and running optimization-based falsification

in which QB-Robustness with Σ is used.

Overall, the major Contributions of this paper

are summarized as follows:

• We propose a novel semantics (QB-Robustness)

for STL formulas that combines quantitative

robustness and Boolean satisfaction. We prove

that QB-Robustness can be used to show the

satisfiability of STL formulas;

• We define a falsification approach based on

MCTS that exploits QB-Robustness to address

the scale problem;

• We implement the approach in the tool

ForeSee, based on which, we performed in-

depth evaluation, demonstrating the effective-

ness and advantage of our approach compared

with the state of the art.

Paper structure In §2, we introduce the preliminar-

ies of the optimization-based falsification. In §3, we

introduce the novel STL semantics QB-Robustness,

and, in §4, we describe the MCTS-based falsifi-

cation approach that uses QB-Robustness. In §5,

we describe the experiments and evaluation results.

Finally, we discuss most relevant work to ours in §6,

and conclude the paper in §7.

2 Preliminaries

In this section, we briefly review the falsification

framework based on robust semantics of temporal

logic [14].

Let T ∈ R+ be a positive real. An M-

dimensional signal with a time horizon T is a func-

tion w : [0, T ] → RM . We treat the system model

as a black box, i.e., its behaviors are only observed

from inputs and their corresponding outputs. For-

mally, a system model, with M -dimensional input

and N -dimensional output, is a function M that

takes an input signal u : [0, T ] → RM and returns a

signal M(u) : [0, T ] → RN . Here the common time



horizon T ∈ R+ is arbitrary.

Definition 2 (STL Syntax) We fix a set Var of

variables. In Signal Temporal Logic (STL), atomic

propositions and formulas are defined as follows,

respectively: α ::≡ f(x1, . . . , xN ) > 0, and φ ::≡
α | ⊥ | ¬φ |

∧
φ |

∨
φ | 2Iφ | 3Iφ | φUIφ Here f is

an N-ary function f : RN → R, x1, . . . , xN ∈ Var,

and I is a closed non-singular interval in R≥0, i.e.,

I = [a, b] or [a,∞), where a, b ∈ R and a < b.

2,3 and U are temporal operators, which are usu-

ally known as always, eventually and until respec-

tively. The always operator 2 and eventually oper-

ator 3 can also be considered as special cases of

the until operator U , where 3Iφ ≡ ⊤ UI φ and

2Iφ ≡ ¬3I¬φ. Other common connectives such as

→,⊤ are introduced as syntactic sugar: ⊤ ≡ ¬⊥,

φ1 → φ2 ≡ ¬φ1 ∨ φ2.

Definition 3 (Quantitative Robust Semantics)

Let w : [0, T ] → RN be an N-dimensional signal,

and t ∈ [0, T ). The t-shift wt of w is the signal

wt : [0, T − t] → RN defined by wt(t′) := w(t+ t′).

Let φ be an STL formula. We define the robustnessJw, φK ∈ R ∪ {∞,−∞} as follows, by induction on

the construction of formulas.
d

and
⊔

denote infi-

mums and supremums of real numbers, respectively.

⊓, the binary version of
d
, denotes minimum.

Jw, f(x1, · · · , xn) > 0K := f
(
w(0)(x1), · · · ,w(0)(xn)

)
Jw,⊥K := −∞ Jw,¬φK := −Jw, φKJw,

∧
i

φiK :=
l
i

Jw, φiK
Jw,

∨
i

φiK :=
⊔
i

Jw, φiK
Jw,2IφK :=

l
t∈I∩[0,T ]

Jwt, φK
Jw,3IφK :=

⊔
t∈I∩[0,T ]

Jwt, φK
Jw, φ1 UI φ2K :=

⊔
t∈I∩[0,T ]

( Jwt, φ2K u l
t′∈[0,t)

Jwt′ , φ1K )
The original STL semantics is Boolean, given by

a binary relation |= between signals and formulas.

The robust semantics refines the Boolean one in

the following sense: Jw, φK > 0 implies w |= φ, andJw, φK < 0 implies w ̸|= φ, see [19, Prop. 16].

2. 1 Hill Climbing-Guided Falsification

So far, the falsification problem has received ex-

tensive industrial and academic attention. One

possible approach direction by hill-climbing opti-

mization is an established field, too: see [2–4, 10,

13–15,17,26,29,36–39,43] and the tools Breach [13]

and S-TaLiRo [4]. We formulate the problem and

the methodology, for later use in describing our fal-

sification approach.

Definition 4 (Falsifying Input) Let M be a

system model, and φ be an STL formula. A sig-

nal u : [0, T ] → R|Var| is a falsifying input ifJM(u), φK < 0; the latter implies M(u) ̸|= φ.

The use of quantitative robust semantics JM(u), φK ∈
R∪{∞,−∞} in the above problem enables the use

of hill-climbing optimization.

Definition 5 (Hill Climbing-Guided Falsification)

Assume the setting in Def. 4, for finding a falsify-

ing input, the methodology of hill climbing-guided

falsification is presented in Algo. 1.

Algorithm 1 Hill climbing-guided falsification

Require: a system modelM, an STL formula φ, and

a time budget

1: function Hill-Climb-Falsify(M, φ)

2: initialize a placeholder u and rb←∞ ▷ the

best input signal and robustness

3: H ← ∅ ▷ sampling history of input signals and

robustness

4: while rb ≥ 0 and within the time budget do

5: u′ ← Hill-Climb(H) ▷ run hill climbing

based on sampling history

6: rb′ ← JM(u′), φK ▷ compute robustness

7: H ← H ∪ {(u′, rb′)} ▷ update sampling

history

8: if rb′ < rb then

9: rb← rb′, u← u′ ▷ update the best

input and robustness

10: return

{
u if rb < 0

Failure otherwise

Here, the function Hill-Climb makes a guess of

an input signal u′, aiming at minimizing the ro-

bustness JM(u′), φK. It does so, learning from the



sampling history H that contains the previous ob-

servations of input signals and their corresponding

robustness values.

The Hill-Climb function can be designed based

on various stochastic optimization algorithms.

Typically, at the early phase of the optimization,

the proposal of new input is usually based on ran-

dom sampling; as the set of sampling history grows

larger, the algorithm takes various metaheuristic-

based strategies to achieve the optimization goal

efficiently. Examples of such algorithms include

Covariance Matrix Adaption Evolution Strategy

(CMA-ES) [7] (used in our experiments), Simulated

Annealing, Global Nelder Mead [32], etc.

3 QB-Robustness

The scale problem is a known important issue

that negatively affects the performance of falsi-

fication, which arises when connective operators

(i.e., conjunction and disjunction) with operands

that predicate on different signals appear in the

STL formula under falsification. According to the

classic quantitative robust semantics (see Def. 3),

the robustness of those formulas is calculated

based on the comparison (minimum for conjunc-

tion, and maximum for disjunction) between ro-

bustness values coming from the different operand

sub-formulas. However, since different signals may

differ in magnitude, the comparison may be biased,

such that one signal w may always (or often) mask

the contribution of the others, and, therefore, the

final robustness may be dominated by this signalw.

Note that, although the scale problem affects con-

nective operators, it is not only local to the place of

their application, but it is always propagated to the

robustness of the whole formula. The scale prob-

lem has been shown as a root cause of the failure

of many falsification problems [21,40].

In this work, we propose a novel approach for

solving the scale problem in falsification. Our ap-

proach consists in introducing a new semantics for

STL that does not suffer from the scale problem.

Such new semantics will be used in a falsification

approach based on Monte Carlo Tree Search. We

describe details of the new semantics in this section,

and the new falsification approach in §4.

The new proposed semantics, called QB-

Robustness, combines quantitative robustness and

Boolean satisfaction. By construction, it never

compares quantitative robustness values that come

from different sub-formulas, thus avoiding the scale

problem. QB-Robustness is defined for the whole

STL formulas, except for the “until” operator φ1UI

φ2, when φ1 is an arbitrary formula. We still sup-

port it as “eventually” and “always” operators†2,

i.e., when φ1 = ⊤. Note that this is not a ma-

jor limitation, as QB-Robustness still supports the

majority of specifications that are used in industry:

indeed, in the experiments, we were able to handle

all the specifications used in falsification competi-

tions [18], which collect benchmarks from industrial

case studies.

To better explain the computation of QB-

Robustness, we introduce some definitions. Let us

first define the notion of immediate sub-formula for

STL.

Definition 6 (Immediate Sub-Formulas) Let φ

be an STL formula (see Def. 2). We define the set

ISForm(φ) of immediate sub-formulas of φ as fol-

lows:

ISForm(α) := ∅ ISForm(⊥) := ∅

ISForm(¬φ) := ISForm(φ)

ISForm(
∧

i∈{1,...,K}

φi) := {φ1, . . . , φK}

ISForm(
∨

i∈{1,...,K}

φi) := {φ1, . . . , φK}

ISForm(2Iφ) := ISForm(φ)

ISForm(3Iφ) := ISForm(φ)

†2 Recall from Def. 2 that the “eventually” and “al-

ways” operators are defined in terms of the “until”

operator.



Intuitively, the immediate sub-formula set of a con-

nective (conjunction or disjunction) contains all its

operands. For the other unary operators (tempo-

ral operators, negation, etc.), its immediate sub-

formula set is given by the immediate sub-formula

set of its argument.

The computation of QB-Robustness requires to

select some nested immediate sub-formulas. To

this aim, we introduce the notion of sub-formula

sequence.

Definition 7 (Sub-Formula Sequence) Let φ

be an STL formula. A sub-formula sequence Σ =

σ1 · . . . · σL w.r.t. φ is defined as follows:

σ1 ∈ ISForm(φ)

σl+1 ∈ ISForm(σl) with l = 1, . . . , L− 1

where the · is the concatenation operator in the se-

quence. We use Σk to denote the kth element of

Σ. Moreover, we denote the first element by Σhead,

and the last element by Σrear. We use Σhead to de-

note Σ without Σhead. We identify with ε the empty

sequence; when ISForm(φ) = ∅, we use ε as its sub-

formula sequence. We identify with Σφ the set of

all the sub-formula sequences rooted in φ.

To be specific, in a sub-formula sequence Σ, each

element is one of the sub-formulas of the previous

element. This means that, for Boolean connectives,

only one of the operands is selected. Moreover, an

atomic sub-formula predicating over a single sig-

nal can only appear as the final element of a se-

quence. We exploit these characteristics of Σ to

define QB-Robustness, which combines the quanti-

tative robustness of the sub-formulas related to a

given signal with the Boolean satisfaction of the

other sub-formulas. QB-Robustness, given a se-

quence Σ, decides whether to compute the quan-

titative robust semantics or the Boolean semantics

of a sub-formula, by considering whether the sub-

formula belongs to Σ or not. This implies that, in

the case of conjunction and disjunction, we evalu-

ate the quantitative robustness of the sub-formula

in Σ and the Boolean satisfaction of the other sub-

formulas. Based on such intuition, we define the se-

mantics of our proposed QB-Robustness in Def. 8,

and demonstrate its usefulness in Thm. 9.

Definition 8 (Semantics of QB-Robustness)

Let φ be an STL formula as defined in Def. 2,

and Σ be a sub-formula sequence w.r.t. φ. For

φ ≡
∧
φi |

∨
φi, let φk ∈ ISForm(φ) be the first el-

ement Σhead of Σ, then we can represent these two

cases as φ ≡ φk∧φk | φk∨φk, where φk is the con-

junction (or disjunction, respectively) of the other

formulas in ISForm(φ) \ {φk}. The QB-Robustness

QBRob(w, φ,Σ) of φ w.r.t. Σ is defined as Fig. 1:

We now prove that the semantics of QB-

Robustness is equivalent (in the sense of satisfac-

tion) to the Boolean semantics, and so it can be

used to show violation of a specification in a falsi-

fication algorithm, as we do in this paper.

Theorem 9 Let φ be an STL formula. Given

a signal w, for any Σ ∈ Σφ, it holds that

QBRob(w, φ,Σ) > 0 implies w |= φ. Similarly,

for any Σ ∈ Σφ, it holds that QBRob(w, φ,Σ) < 0

implies w ̸|= φ.

Proof 10 We first recall from [19, Prop. 16] thatJw, φK < 0 implies w ̸|= φ, and that Jw, φK > 0

implies w |= φ. We prove Thm. 9 by induction on

the structure of the formula.

• Case φ = α. By Def. 8, QBRob(w, α, ε) > 0

indicates that Jw, αK > 0 and hence w |= α,

and QBRob(w, α, ε) < 0 that Jw, αK < 0 and

hence w ̸|= φ.

• For the following cases, let us assume

that Thm. 9 holds for an arbitrary for-

mula φ′ and its sub-formula sequence Σ′ that

QBRob(w, φ′,Σ′) > 0 implies Jw, φ′K > 0, and

that QBRob(w, φ′,Σ′) < 0 implies Jw, φ′K < 0.

We aim to prove that Thm. 9 also holds for φ,

resulting from the application of the operator

in each of the following cases to φ′, and Σ, the



QBRob(w, α, ε) := Jw, αK QBRob(w,⊥, ε) := −∞ QBRob(w,¬φ,Σ) := −QBRob(w, φ,Σ)

QBRob(w, φk ∧ φk,Σ) :=

 QBRob(w, φk,Σhead) if w |= φk

−∞ otherwise

QBRob(w, φk ∨ φk,Σ) :=

 QBRob(w, φk,Σhead) if w ̸|= φk

∞ otherwise

QBRob(w,2Iφ,Σ) :=
l
t∈I

QBRob(wt, φ,Σ) QBRob(w,3Iφ,Σ) :=
⊔
t∈I

QBRob(wt, φ,Σ)

図 1: QB-Robustness

sub-formula sequence of φ.

– Case φ = φ′ ∧ ψ, where ψ is an ar-

bitrary formula. Let Σ = φ′ · Σ′, and

let us consider the two cases in which

QBRob(w, φ,Σ) is negative and positive

separately:

∗ If QBRob(w, φ,Σ) < 0, there are two

sub-cases:

· if QBRob(w, φ′,Σ′) < 0, thenJw, φ′K < 0 (by assumption).

Then, by the robust semantics

of conjunction, also Jw, φK < 0

holds, and so it does w ̸|= φ.

· if QBRob(w, φ′,Σ′) > 0, thenJw, φ′K > 0 (by assumption).

Then, it holds w ̸|= ψ by Def. 8,

and, therefore, it holds w ̸|= φ.

∗ If QBRob(w, φ,Σ) > 0, it means

that QBRob(w, φ′,Σ′) > 0 and w |=
ψ (by Def. 8). By assumption, if

QBRob(w, φ′,Σ′) > 0, then Jw, φ′K >
0. Therefore, w |= φ.

– Case φ = 2Iφ
′. Let Σ = Σ′, and

let us consider the two cases in which

QBRob(w, φ,Σ) is negative and positive

separately:

∗ By Def. 8,QBRob(w, φ,Σ) < 0 indi-

cates that there exists a t ∈ I such that

QBRob(wt, φ′,Σ) < 0. By assump-

tion, it holds that wt ̸|= φ′. Then, by

the semantics of the always operator

2, it holds that w ̸|= φ.

∗ By Def. 8,QBRob(w, φ,Σ) > 0 indi-

cates that for all t ∈ I it holds that

QBRob(wt, φ′,Σ) > 0. Then, by as-

sumption, it holds that for all t ∈ I,

wt |= φ′. So, by the semantics of

the always operator 2, it holds that

w |= φ.

– Case φ = ¬φ′. Let Σ = Σ′, and

let us consider the two cases in which

QBRob(w, φ,Σ) is negative and positive

separately:

∗ By Def. 8, QBRob(w, φ,Σ) < 0 indi-

cates that QBRob(w, φ′,Σ′) > 0. By

assumption, it holds that w |= φ′, and

therefore, w ̸|= φ.

∗ By Def. 8, QBRob(w, φ,Σ) > 0 indi-

cates that QBRob(w, φ′,Σ′) < 0. By

assumption, it holds that w ̸|= φ′, and,

therefore, w |= φ.

– Proofs for the cases of φ = φ′ ∨ ψ and

φ = 3Iφ
′ follow similar proof patterns,

and so are left to the readers.

We use an example to illustrate how QB-

Robustness is used for checking the satisfiability of

an STL formula.

Example 11 Let w : [0, T ] → R2 be a 2-

dimensional signal and φ = 2I(φ1∨φ2) be an STL

formula where φ1 and φ2 are two atomic formu-



las. Intuitively, to make φ falsified, there must exist

t ∈ I such that wt ̸|= φ1 and wt ̸|= φ2. Let us con-

sider a non-trivial falsification problem in which,

for most of the signals w, sets {t ∈ I | wt ̸|= φ1}
and {t ∈ I | wt ̸|= φ2} are non-empty and disjoint.

By Def. 8, given the sub-formula sequence Σ =

φ1 of φ, the corresponding QB-Robustness is

QBRob(w, φ,Σ) =
d

t∈IQBRob(wt, φ1 ∨ φ2, φ1),

i.e., it takes the infimum of QBRob(wt, φ1∨φ2, φ1)

over t ∈ I. Again, by Def. 8, for any t′ ∈ I,

QBRob(wt′ , φ1 ∨ φ2, φ1) is computed as follows:

• if for a t′ ∈ I it holds wt′ |= φ2, then

QBRob(wt′ , φ1 ∨ φ2, φ1) = ∞. Then, it is

impossible that
d

t∈IQBRob(wt, φ1 ∨ φ2, φ1) is

given by QBRob(wt′ , φ1 ∨ φ2, φ1);

• if for a t′ ∈ I it holds wt′ ̸|= φ2, then

QBRob(wt′ , φ1∨φ2, φ1) = QBRob(wt′ , φ1, ε) =Jwt′ , φ1K. In this case, QBRob(wt′ , φ1 ∨
φ2, φ1) has a chance to determine the value ofd

t∈IQBRob(wt, φ1 ∨ φ2, φ1).

Therefore, when Σ = φ1, it holds that

QBRob(w, φ,Σ) =
d

t∈SJwt, φ1K, where S = {t ∈
I | wt ̸|= φ2}, i.e., the infimum of the quantitative

robustness of φ1 on the interval when φ2 is vio-

lated. Indeed, once this value is negative, it means

that there exists a point t ∈ I when both φ1 and φ2

are violated; by the Boolean semantics of always

and disjunction, φ is violated.

4 MCTS-based Falsification Guided by

QB-Robustness

QB-Robustness never compares robustness val-

ues coming from signals with different magnitudes,

and, therefore, it does not suffer from the scale

problem. As such, it could be used in falsification

approaches instead of the classical pure quantita-

tive robustness.

However, a sub-formula sequence Σ is required

when calculating QB-Robustness, and such se-

quence is not unique (see Def. 8). Note that the se-

lection of the sequence can affect the performance

of the numerical optimization algorithms used in

falsification. Let us consider φ ≡ 2((gear <

6) ∧ (speed < 130)) as an example. As explained

in §1, numerical optimization will perform better if

guided by the robustness values coming from speed

rather than by those coming from gear . Therefore,

in a falsification approach using QB-Robustness, it

is important to select an appropriate sub-formula

sequence Σ.

By using the QB-Robustness, the problem of fal-

sifying an STL formula φ consists in finding both a

signal w and a sub-formula sequence Σ such that

QBRob(w, φ,Σ) < 0. The selection of Σ is dis-

crete, while the search for w is numerical. In or-

der to combine these processes that are different

in nature, we propose to adapt Monte Carlo Tree

Search (MCTS) [8, 28]. In the following, we firstly

give a brief introduction to MCTS in §4. 1, and then

present the application of MCTS to our falsification

problem in §4. 2.

4. 1 MCTS Background

MCTS exemplifies the “trial and error” philoso-

phy, and has achieved a great success over the past

decade, most notably in fields such as the com-

puter Go game [35]. MCTS explores the action

space given by the possible actions of the system;

for example, in the Go game, these are the positions

where to put the next stone. The approach builds a

tree of sequences of actions, and assigns rewards to

the different branches. MCTS performs the search

by iteratively taking the following four steps. See

Fig. 2, where the general scheme is adapted to our

current setting, for illustration.

• Selection. It selects a node to expand or to

reason about. Initially, selection has no other

choice than the root. When a node has mul-

tiple expanded children, selection will be done

according to the UCB1 [6] algorithm.



• Expansion. Child expansion happens after se-

lection if the selected node has unexpanded

children. A child will be added to the tree dur-

ing expansion.

• Playout. After a node is just expanded or a leaf

is reached, playout is performed for evaluating

the node. The evaluation is given by a reward,

which is a real number in [0, 1]. Reward can

be interpreted differently in different contexts.

For example, in the Go game, the reward of a

position is measured by the winning rate when

a stone is positioned there; this is estimated

by randomly playing the game until the end

for n times, and then taking the ratio nw
n

of

the number of winning as the winning rate.

• Backpropagation. Backpropagation updates

the number of visits and the reward of the

nodes along the path from the node of playout

to the root. These data are used in subsequent

loops to decide the branches to explore.

At the end, the action space will be sufficiently ex-

plored in an unbalanced manner, by focusing on

the most promising sub-spaces giving the highest

rewards.

4. 2 Proposed QB-Robustness-Guided Fal-

sification Approach

We here propose a falsification framework based

on MCTS in which, during tree construction, we

synthesize and select a sub-formula sequence that

facilitates the falsification progress the most, and,

at the bottom layer of the tree, we run numerical

optimization to search for a falsifying input and

provide feedback (i.e., backpropagation) to guide

the sequence selection.

We formalize our algorithm in Algo. 2 and visu-

alize its execution in Fig. 2. In the following, we

elaborate on our approach.

We construct the tree in this way: each node

represents a sequence of formulas, and each edge

of a node is a sub-formula of the last element of

the sequence represented by the node. The root is

initialized with a sequence holding φ only (Lines 2-

3) and some other properties including the num-

ber of visits to the different nodes (Line 4), the

reward (Line 5), and the history of hill-climbing

sampling (Line 6). The main process of MCTS

consists in calling the MCTSSearch function it-

eratively with the root as argument (Line 8), until

the exhaustion of the MCTS budget or a falsifying

input is found (Line 7). The MCTSSearch func-

tion (Line 9) goes through the four phases, namely

selection, expansion, playout and backpropagation,

of the original MCTS algorithm.

4. 2. 0. 1 Selection

Selection happens when a node has children

(Line 10) and these have all been expanded

(Line 11). It selects a child according to the

UCB1 [6] algorithm (Line 12) to take a balance be-

tween exploration and exploitation. The exploita-

tion is embodied by the reward R(Σ · φi)—the

higher the reward is, the more likely a falsifying in-

put is found following that branch. Exploration, in-

stead, is considered via
√

2 lnN(Σ)
N(Σ·φi)

that is negatively

correlated to the number of visits to a child—the

more the child was visited before, the less chance

it will be visited again. The scalar c is a tunable

parameter that balances the trade-off between ex-

ploration and exploitation. After a child Σ · φk is

selected, it will be taken as the argument of the

next MCTSSearch loop (Line 18).

4. 2. 0. 2 Expansion

If not all the children of a node have been ex-

panded (Line 13), a child will be expanded. Ex-

pansion consists in randomly selecting a child from

the unexpanded child list (Line 14), adding it to

the tree (Line 15), initilizing properties including

the number of visits and history (Lines 16-17).

After expansion, the newly expanded child will

be taken as the argument of the recursive call to



Algorithm 2 MCTS-based falsification guided by QB-Robustness

Require: a system modelM, an STL formula φ, and the following tunable parameters: a scalar c for UCB1, an

MCTS budget BM , and a playout budget BP .

1: function MCTS

2: Σinit ← φ ▷ the root denoted as a sequence with φ only

3: T ← {Σinit} ▷ the MCTS search tree, initially root only

4: N ← (Σinit 7→ 0) ▷ visit count N initialized, defined only for root

5: R← (Σinit 7→ 0) ▷ reward function R initialized

6: H ← (Σinit 7→ ∅) ▷ the sampling history of hill climbing

7: while φ not falsified and within the MCTS budget BM do

8: MCTSSearch(Σinit)

9: function MCTSSearch(Σ)

10: if ISForm(Σrear) 6= ∅ then ▷ the node has children

11: if Σ · φk ∈ T for all φk ∈ ISForm(Σrear) then ▷ all children expanded

12: φk ← arg max
φi∈ISForm(Σrear)

(
R(Σ · φi) + c

√
2 lnN(Σ)

N(Σ · φi)

)
▷ selection by UCB1

13: else ▷ unexpanded children exist

14: randomly select φk from {φk ∈ ISForm(Σrear) | Σ · φk 6∈ T }
15: T ← T ∪ {Σ · φk} ▷ expand a new child

16: N(Σ · φk)← 0

17: H(Σ · φk)← ∅
18: MCTSSearch(Σ · φk) ▷ recursive call

19: R(Σ)← max
φk∈ISForm(Σrear)

R(Σ · φk) ▷ back propagation for reward

20: else ▷ a leaf node reached

21: while within playout budget BP do ▷ playout by hill-climbing falsification

22: u← Hill-Climb(H(Σ)) ▷ hill-climbing

23: rb← QBRob(M(u), φ,Σhead)

24: if rb < 0 then ▷ falsifying input found

25: return (u, rb)

26: H(Σ)← H(Σ) ∪ {(u, rb)} ▷ record sampling history

27: R(w)← Rwd(rb, H(Σ))

28: N(Σ)← N(Σ) + 1 ▷ back propagation for visit count

MCTSSearch (Line 18).

4. 2. 0. 3 Playout

If a leaf node that has no children to expand

is reached, the playout phase will start to devise

a reward for evaluating the visited path. In our

context, we define the reward based on the best

robustness value that can be obtained with the

path; specifically, playout consists in running hill-

climbing guided falsification to search for a minimal

robustness value (Line 22). Note that the sequence

Σ represented by a leaf node is actually the concate-

nation between φ and a sub-formula sequence of φ.

We extract the suffix of Σ, i.e., the sub-formula se-

quence, to compute the QB-Robustness as a guid-

ance to the hill-climbing optimization (Line 23).

If a negative QB-Robustness is found (Line 24),

then the whole algorithm can be terminated and

the input signal u that triggers the negative QB-

Robustness can be returned as the falsifying in-

put (Line 25); otherwise, the sampling history of

hill climbing will be saved (Line 26) so that the

future playout at the same leaf can be restored

from that context. After playout, the reward of

the leaf node will be updated based on the defi-

nition of the reward, which will be introduced be-

low. Reward Since our goal is to find a sequence Σ
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'2

<latexit sha1_base64="vYkRiwPfev1BAlqEalPzjr/iVvk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSSloseiF48VbC20oWy2m3bpZjfsTgol9Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5YSK4Qc/7dgobm1vbO8Xd0t7+weFR+fikbVSqKWtRJZTuhMQwwSVrIUfBOolmJA4FewrHd3P/acK04Uo+4jRhQUyGkkecErRStzchOhnxflab9csVr+ot4K4TPycVyNHsl796A0XTmEmkghjT9b0Eg4xo5FSwWamXGpYQOiZD1rVUkpiZIFucPHMvrDJwI6VtSXQX6u+JjMTGTOPQdsYER2bVm4v/ed0Uo5sg4zJJkUm6XBSlwkXlzv93B1wzimJqCaGa21tdOiKaULQplWwI/urL66Rdq/r16tVDvdK4zeMowhmcwyX4cA0NuIcmtICCgmd4hTcHnRfn3flYthacfOYU/sD5/AFzXJFf</latexit>

'12

<latexit sha1_base64="8hPBfxMy/T0IiyDgtB3LPDwnZNA=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRbBU9ktLXosevFYwX5AdynZNNuGZrMhyRbK0r/hxYMiXv0z3vw3pu0etPXBwOO9GWbmhZIzbVz32ylsbe/s7hX3SweHR8cn5dOzjk5SRWibJDxRvRBrypmgbcMMpz2pKI5DTrvh5H7hd6dUaZaIJzOTNIjxSLCIEWys5PtTrOSYDTKvNh+UK27VXQJtEi8nFcjRGpS//GFC0pgKQzjWuu+50gQZVoYRTuclP9VUYjLBI9q3VOCY6iBb3jxHV1YZoihRtoRBS/X3RIZjrWdxaDtjbMZ63VuI/3n91ES3QcaETA0VZLUoSjkyCVoEgIZMUWL4zBJMFLO3IjLGChNjYyrZELz1lzdJp1b16tXGY73SvMvjKMIFXMI1eHADTXiAFrSBgIRneIU3J3VenHfnY9VacPKZc/gD5/MH5rqRmg==</latexit>

'1

<latexit sha1_base64="caohO4wlrX0Z13AJ1lkcoMr09Fc=">AAAB8nicdVDLSsNAFJ3UV62vqks3g0VwFZIa27orunFZwT4gDWUynbRDJzNhZlIooZ/hxoUibv0ad/6Nk7aCih64cDjnXu69J0wYVdpxPqzC2vrG5lZxu7Szu7d/UD486iiRSkzaWDAheyFShFFO2ppqRnqJJCgOGemGk5vc706JVFTwez1LSBCjEacRxUgbye9PkUzGdJC580G54thXjVrVq0HHdpy6W3VzUq17Fx50jZKjAlZoDcrv/aHAaUy4xgwp5btOooMMSU0xI/NSP1UkQXiCRsQ3lKOYqCBbnDyHZ0YZwkhIU1zDhfp9IkOxUrM4NJ0x0mP128vFvzw/1VEjyChPUk04Xi6KUga1gPn/cEglwZrNDEFYUnMrxGMkEdYmpZIJ4etT+D/pVG3Xsy/vvErzehVHEZyAU3AOXFAHTXALWqANMBDgATyBZ0tbj9aL9bpsLVirmWPwA9bbJ9HmkaA=</latexit>

'11

<latexit sha1_base64="NvfrSu8xvyCNRk2UDZFg07pmyL8=">AAAB83icdVDLSsNAFJ3UV62vqks3g0VwFTI1tnVXdOOygn1AE8pkOmmHTiZhZlIoob/hxoUibv0Zd/6Nk7aCih64cDjnXu69J0g4U9pxPqzC2vrG5lZxu7Szu7d/UD486qg4lYS2Scxj2QuwopwJ2tZMc9pLJMVRwGk3mNzkfndKpWKxuNezhPoRHgkWMoK1kTxvimUyZoMMofmgXHHsq0at6tagYztOHVVRTqp198KFyCg5KmCF1qD87g1jkkZUaMKxUn3kJNrPsNSMcDoveamiCSYTPKJ9QwWOqPKzxc1zeGaUIQxjaUpouFC/T2Q4UmoWBaYzwnqsfnu5+JfXT3XY8DMmklRTQZaLwpRDHcM8ADhkkhLNZ4ZgIpm5FZIxlphoE1PJhPD1KfyfdKo2cu3LO7fSvF7FUQQn4BScAwTqoAluQQu0AQEJeABP4NlKrUfrxXpdthas1cwx+AHr7RNFU5Hb</latexit>

hill climbing guided 
by QB-Robustness

a falsifying input found!
rwd : 0.8

<latexit sha1_base64="PAV8ypzdvCkoZhR2Bm3HG0XltgI=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUhEsbgqunFZwT6gDWUymbRDJw9mJpYS+yluXCji1i9x5984TbPQ1gMDh3Pu5Z45XsKZVLb9bZTW1jc2t8rblZ3dvf0Ds3rYlnEqCG2RmMei62FJOYtoSzHFaTcRFIcepx1vfDv3O49USBZHD2qaUDfEw4gFjGClpYFZ7YdYjWSQiYk/u0a2VR+YNduyc6BV4hSkBgWaA/Or78ckDWmkCMdS9hw7UW6GhWKE01mln0qaYDLGQ9rTNMIhlW6WR5+hU634KIiFfpFCufp7I8OhlNPQ05N50GVvLv7n9VIV1N2MRUmqaEQWh4KUIxWjeQ/IZ4ISxaeaYCKYzorICAtMlG6roktwlr+8StrnlnNhXd5f1Bo3RR1lOIYTOAMHrqABd9CEFhCYwDO8wpvxZLwY78bHYrRkFDtH8AfG5w9n/ZNx</latexit>

visit : 1

<latexit sha1_base64="qK+zTjfm3pOWGonSvDh9nhvOfws=">AAAB+HicbVDLSgNBEJyNrxgfWfXoZTAInsKuRBRPQS8eI5gHJEuYnXSSIbMPZnqDccmXePGgiFc/xZt/4yTZgyYWNBRV3XR3+bEUGh3n28qtrW9sbuW3Czu7e/tF++CwoaNEcajzSEaq5TMNUoRQR4ESWrECFvgSmv7oduY3x6C0iMIHnMTgBWwQir7gDI3UtYsdhEdMx0ILnF5Tt2uXnLIzB10lbkZKJEOta391ehFPAgiRS6Z123Vi9FKmUHAJ00In0RAzPmIDaBsasgC0l84Pn9JTo/RoP1KmQqRz9fdEygKtJ4FvOgOGQ73szcT/vHaC/SsvFWGcIIR8saifSIoRnaVAe0IBRzkxhHElzK2UD5liHE1WBROCu/zyKmmcl91K+eK+UqreZHHkyTE5IWfEJZekSu5IjdQJJwl5Jq/kzXqyXqx362PRmrOymSPyB9bnD7EZkxw=</latexit>

rwd : 0.8

<latexit sha1_base64="PAV8ypzdvCkoZhR2Bm3HG0XltgI=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUhEsbgqunFZwT6gDWUymbRDJw9mJpYS+yluXCji1i9x5984TbPQ1gMDh3Pu5Z45XsKZVLb9bZTW1jc2t8rblZ3dvf0Ds3rYlnEqCG2RmMei62FJOYtoSzHFaTcRFIcepx1vfDv3O49USBZHD2qaUDfEw4gFjGClpYFZ7YdYjWSQiYk/u0a2VR+YNduyc6BV4hSkBgWaA/Or78ckDWmkCMdS9hw7UW6GhWKE01mln0qaYDLGQ9rTNMIhlW6WR5+hU634KIiFfpFCufp7I8OhlNPQ05N50GVvLv7n9VIV1N2MRUmqaEQWh4KUIxWjeQ/IZ4ISxaeaYCKYzorICAtMlG6roktwlr+8StrnlnNhXd5f1Bo3RR1lOIYTOAMHrqABd9CEFhCYwDO8wpvxZLwY78bHYrRkFDtH8AfG5w9n/ZNx</latexit>

visit : 1

<latexit sha1_base64="qK+zTjfm3pOWGonSvDh9nhvOfws=">AAAB+HicbVDLSgNBEJyNrxgfWfXoZTAInsKuRBRPQS8eI5gHJEuYnXSSIbMPZnqDccmXePGgiFc/xZt/4yTZgyYWNBRV3XR3+bEUGh3n28qtrW9sbuW3Czu7e/tF++CwoaNEcajzSEaq5TMNUoRQR4ESWrECFvgSmv7oduY3x6C0iMIHnMTgBWwQir7gDI3UtYsdhEdMx0ILnF5Tt2uXnLIzB10lbkZKJEOta391ehFPAgiRS6Z123Vi9FKmUHAJ00In0RAzPmIDaBsasgC0l84Pn9JTo/RoP1KmQqRz9fdEygKtJ4FvOgOGQ73szcT/vHaC/SsvFWGcIIR8saifSIoRnaVAe0IBRzkxhHElzK2UD5liHE1WBROCu/zyKmmcl91K+eK+UqreZHHkyTE5IWfEJZekSu5IjdQJJwl5Jq/kzXqyXqx362PRmrOymSPyB9bnD7EZkxw=</latexit>

rwd : 0.8

<latexit sha1_base64="PAV8ypzdvCkoZhR2Bm3HG0XltgI=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUhEsbgqunFZwT6gDWUymbRDJw9mJpYS+yluXCji1i9x5984TbPQ1gMDh3Pu5Z45XsKZVLb9bZTW1jc2t8rblZ3dvf0Ds3rYlnEqCG2RmMei62FJOYtoSzHFaTcRFIcepx1vfDv3O49USBZHD2qaUDfEw4gFjGClpYFZ7YdYjWSQiYk/u0a2VR+YNduyc6BV4hSkBgWaA/Or78ckDWmkCMdS9hw7UW6GhWKE01mln0qaYDLGQ9rTNMIhlW6WR5+hU634KIiFfpFCufp7I8OhlNPQ05N50GVvLv7n9VIV1N2MRUmqaEQWh4KUIxWjeQ/IZ4ISxaeaYCKYzorICAtMlG6roktwlr+8StrnlnNhXd5f1Bo3RR1lOIYTOAMHrqABd9CEFhCYwDO8wpvxZLwY78bHYrRkFDtH8AfG5w9n/ZNx</latexit>

visit : 1

<latexit sha1_base64="qK+zTjfm3pOWGonSvDh9nhvOfws=">AAAB+HicbVDLSgNBEJyNrxgfWfXoZTAInsKuRBRPQS8eI5gHJEuYnXSSIbMPZnqDccmXePGgiFc/xZt/4yTZgyYWNBRV3XR3+bEUGh3n28qtrW9sbuW3Czu7e/tF++CwoaNEcajzSEaq5TMNUoRQR4ESWrECFvgSmv7oduY3x6C0iMIHnMTgBWwQir7gDI3UtYsdhEdMx0ILnF5Tt2uXnLIzB10lbkZKJEOta391ehFPAgiRS6Z123Vi9FKmUHAJ00In0RAzPmIDaBsasgC0l84Pn9JTo/RoP1KmQqRz9fdEygKtJ4FvOgOGQ73szcT/vHaC/SsvFWGcIIR8saifSIoRnaVAe0IBRzkxhHElzK2UD5liHE1WBROCu/zyKmmcl91K+eK+UqreZHHkyTE5IWfEJZekSu5IjdQJJwl5Jq/kzXqyXqx362PRmrOymSPyB9bnD7EZkxw=</latexit>

rwd : 0.8

<latexit sha1_base64="PAV8ypzdvCkoZhR2Bm3HG0XltgI=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUhEsbgqunFZwT6gDWUymbRDJw9mJpYS+yluXCji1i9x5984TbPQ1gMDh3Pu5Z45XsKZVLb9bZTW1jc2t8rblZ3dvf0Ds3rYlnEqCG2RmMei62FJOYtoSzHFaTcRFIcepx1vfDv3O49USBZHD2qaUDfEw4gFjGClpYFZ7YdYjWSQiYk/u0a2VR+YNduyc6BV4hSkBgWaA/Or78ckDWmkCMdS9hw7UW6GhWKE01mln0qaYDLGQ9rTNMIhlW6WR5+hU634KIiFfpFCufp7I8OhlNPQ05N50GVvLv7n9VIV1N2MRUmqaEQWh4KUIxWjeQ/IZ4ISxaeaYCKYzorICAtMlG6roktwlr+8StrnlnNhXd5f1Bo3RR1lOIYTOAMHrqABd9CEFhCYwDO8wpvxZLwY78bHYrRkFDtH8AfG5w9n/ZNx</latexit>

visit : 1

<latexit sha1_base64="qK+zTjfm3pOWGonSvDh9nhvOfws=">AAAB+HicbVDLSgNBEJyNrxgfWfXoZTAInsKuRBRPQS8eI5gHJEuYnXSSIbMPZnqDccmXePGgiFc/xZt/4yTZgyYWNBRV3XR3+bEUGh3n28qtrW9sbuW3Czu7e/tF++CwoaNEcajzSEaq5TMNUoRQR4ESWrECFvgSmv7oduY3x6C0iMIHnMTgBWwQir7gDI3UtYsdhEdMx0ILnF5Tt2uXnLIzB10lbkZKJEOta391ehFPAgiRS6Z123Vi9FKmUHAJ00In0RAzPmIDaBsasgC0l84Pn9JTo/RoP1KmQqRz9fdEygKtJ4FvOgOGQ73szcT/vHaC/SsvFWGcIIR8saifSIoRnaVAe0IBRzkxhHElzK2UD5liHE1WBROCu/zyKmmcl91K+eK+UqreZHHkyTE5IWfEJZekSu5IjdQJJwl5Jq/kzXqyXqx362PRmrOymSPyB9bnD7EZkxw=</latexit>

rwd : 0.2

<latexit sha1_base64="IzMY9mtX+9MNEzb9OwbDJAuDHdU=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUhKRXFVdOOygm2FNpTJZNIOnTyYmVhK7Ke4caGIW7/EnX/jNM1CWw8MHM65l3vmeAlnUtn2t1FaW9/Y3CpvV3Z29/YPzOphR8apILRNYh6LBw9LyllE24opTh8SQXHocdr1xjdzv/tIhWRxdK+mCXVDPIxYwAhWWhqY1X6I1UgGmZj4sytkW/WBWbMtOwdaJU5BalCgNTC/+n5M0pBGinAsZc+xE+VmWChGOJ1V+qmkCSZjPKQ9TSMcUulmefQZOtWKj4JY6BcplKu/NzIcSjkNPT2ZB1325uJ/Xi9VwaWbsShJFY3I4lCQcqRiNO8B+UxQovhUE0wE01kRGWGBidJtVXQJzvKXV0mnbjkN6/yuUWteF3WU4RhO4AwcuIAm3EIL2kBgAs/wCm/Gk/FivBsfi9GSUewcwR8Ynz9e5ZNr</latexit>

visit : 1

<latexit sha1_base64="qK+zTjfm3pOWGonSvDh9nhvOfws=">AAAB+HicbVDLSgNBEJyNrxgfWfXoZTAInsKuRBRPQS8eI5gHJEuYnXSSIbMPZnqDccmXePGgiFc/xZt/4yTZgyYWNBRV3XR3+bEUGh3n28qtrW9sbuW3Czu7e/tF++CwoaNEcajzSEaq5TMNUoRQR4ESWrECFvgSmv7oduY3x6C0iMIHnMTgBWwQir7gDI3UtYsdhEdMx0ILnF5Tt2uXnLIzB10lbkZKJEOta391ehFPAgiRS6Z123Vi9FKmUHAJ00In0RAzPmIDaBsasgC0l84Pn9JTo/RoP1KmQqRz9fdEygKtJ4FvOgOGQ73szcT/vHaC/SsvFWGcIIR8saifSIoRnaVAe0IBRzkxhHElzK2UD5liHE1WBROCu/zyKmmcl91K+eK+UqreZHHkyTE5IWfEJZekSu5IjdQJJwl5Jq/kzXqyXqx362PRmrOymSPyB9bnD7EZkxw=</latexit>

selection by 
UCB1 algorithm

Initialization Expansion Playout Backpropagation Selection Termination

rb QBRob(M(u),',⌃)

<latexit sha1_base64="RdTWW1K6B1F46U7JWlrztLtvR1Y="></latexit>

⌃ '1 · '11

<latexit sha1_base64="xmnx5OMP5HvIi3yiaE01IHQO5aM=">AAACD3icbVDLSsNAFJ34rPUVdelmsCiuSiIVXRbduKxoH9CEMJlM2qGTBzM3hRL6B278FTcuFHHr1p1/47SNoK0HLpw5517m3uOngiuwrC9jaXlldW29tFHe3Nre2TX39lsqySRlTZqIRHZ8opjgMWsCB8E6qWQk8gVr+4Prid8eMql4Et/DKGVuRHoxDzkloCXPPHHueC8iTo+Bws6QyLTPPduhQQI/r9y2x55ZsarWFHiR2AWpoAINz/x0goRmEYuBCqJU17ZScHMigVPBxmUnUywldEB6rKtpTCKm3Hx6zxgfayXAYSJ1xYCn6u+JnERKjSJfd0YE+mrem4j/ed0Mwks353GaAYvp7KMwExgSPAkHB1wyCmKkCaGS610x7RNJKOgIyzoEe/7kRdI6q9q16vltrVK/KuIooUN0hE6RjS5QHd2gBmoiih7QE3pBr8aj8Wy8Ge+z1iWjmDlAf2B8fAM0U5zG</latexit>

Hill-Climb({u, rb})

<latexit sha1_base64="gn7NAn7leSshAAUuqFPmYz9Ygto=">AAACGXicbVDLSgMxFM3UV62vqks3wVKooGVGKrosdtNlBfuATimZNNOGZh4kd8QyzG+48VfcuFDEpa78GzNtBW09EDick8s99zih4ApM88vIrKyurW9kN3Nb2zu7e/n9g5YKIklZkwYikB2HKCa4z5rAQbBOKBnxHMHazriW+u07JhUP/FuYhKznkaHPXU4JaKmfN21g96BoXOdCnNUE95ykZMe2R2DkuHGUnOIfLp3ETk76+YJZNqfAy8SakwKao9HPf9iDgEYe84EKolTXMkPoxUQCp4IlOTtSLCR0TIasq6lPPKZ68fSyBBe1MsBuIPXzAU/V3xMx8ZSa6My4mKZUi14q/ud1I3CvejH3wwiYT2eL3EhgCHBaEx5wySiIiSaESq6zYjoiklDQZeZ0CdbiycukdV62KuWLm0qhej2vI4uO0DEqIQtdoiqqowZqIooe0BN6Qa/Go/FsvBnvs68ZYz5ziP7A+PwGiL6hQQ==</latexit>

図 2: The workflow of MCTS-based falsification guided by QB-Robustness. Let us consider the falsifica-

tion of an STL formula φ = 2I (φ1 ∨ φ2), where φ1 = φ11 ∧ φ12. Initially, there is only the root in the

tree, so the algorithm selects it for expansion. Then, the algorithm keeps on randomly selecting a child

of a non-fully expanded node, until a leaf node is reached. By reaching a leaf, a sub-formula sequence

Σ has been constructed; the algorithm performs playout using Σ, by running hill-climbing optimization

guided by the QB-Robustness with Σ, to estimate the reward of the path. After playout, the algorithm

backpropagates the reward and the number of visits from the leaf to the root. When all the children of

a node are expanded, selection is done based on the UCB1 algorithm. After many loops, the algorithm

has explored all the possible sub-formula sequences in Σφ, and it starts allocating more resources to those

branches where hill-climbing optimization progresses more smoothly. The algorithm terminates either

when a falsifying input is found, or when the budget is exhausted.

with which hill-climbing optimization can minimize

QBRob(w, φ,Σ) smoothly, we connect the reward

with the hill-climbing progress. Formally, given a

sampling history H, our reward (Line 27) is defined

as Rwd(rb′, H) := max rbh−min ({rb′}∪rbh)
max rbh

, where

rbh is the history of robustness values in H.

4. 2. 0. 4 Backpropagation

In MCTS, the playout result of a leaf is backprop-

agated to the higher layer nodes along the path, so

that the future selection on the high layer is re-

ferred. Backpropagation updates two properties of

each ancestor of the leaf till the root, the reward

(Line 19) and the number of visits (Line 28).

Remark 12 (Approach Complexity) With re-

spect to classical falsification, our approach in-

troduces an exploration phase for searching the

“best” sub-formula sequence to instantiate QB-

Robustness. The number of these sequences corre-

sponds to the number of atomic sub-formulas (and

so the leaves of the tree). Considering that most of

the time is spent on playout, the complexity of our

approach grows linearly with the number of atomic

sub-formulas.

5 Experimental Evaluation

In this section, we present the experiments we

conducted to evaluate the effectiveness of the pro-

posed approach. We first introduce the experiment

setup in §5. 1, and then we present the experimen-

tal evaluation results by answering three research

questions in §5. 2.



5. 1 Experiment Setup

5. 1. 0. 1 Simulink Models and Specifica-

tions

As our benchmarks, we selected three Simulink

models frequently used in the falsification commu-

nity (i.e., in the falsification competitions [18]), and

30 specifications defined for them. All these mod-

els are complicated hybrid systems with multiple

input and output signals. The specifications are

STL formulas that formalize system requirements

regarding safety, performance, etc. Since we are in-

terested in assessing the influence of the scale prob-

lem to the performance of the compared falsifica-

tion approaches, all the considered specifications

predicate over, at least, two signals. Table 1 re-

ports the 30 specifications under test. The IDs of

the specifications identify which models they be-

long to. A description of the three models and of

their specifications is as follows.

• Automatic Transmission (AT) [24] has two in-

put signals, throttle ∈ [0, 100] and brake ∈
[0, 325], and three outputs signals including

gear, speed and rpm. Most of the specifica-

tions we used formalize safety requirements of

the system. For instance, AT2 requires that

when gear is as high as 4, rpm should not be

larger than 4300; AT3 is an adaptation of the

example we used in §1; AT10-12 reason about

the relationship among the three output sig-

nals; AT17 specifies three properties for three

different time intervals; AT18 specifies different

properties for different values of gear ; AT14,

AT21 and AT22 impose logical constraints on

input signals, in addition to the property under

consideration.

• Abstract Fuel Control (AFC) [25] takes two

input signals, PedalAngle ∈ [8.8, 70] and

EngineSpeed ∈ [900, 1100], and outputs a ra-

tio µ reflecting the deviation of air-fuel-ratio

from its reference value. The basic safety re-

quirement to this system is that µ should not

be deviated from the reference value too much

(AFC1); in addition to that, our specifications

also reason about the resilience of the system

(AFC5 and AFC6), and impose input con-

straints (AFC2-6).

• Free Floating Robot (FFR) [11] models robot

moving in a 2-dimentional space. It has four

input signals u1, u2, u3, u4 ∈ [−10, 10] that are

boosters for a robot, and four output signals

that are the position in terms of coordinate

values x, y and their one-order derivatives ẋ, ẏ.

The specifications regulate the kinetic proper-

ties of the robot: FFR1 requires the robot to

pass an area around the point (4, 4) under an

input constraint, and FFR2 requires the robot

to stay in an area for at least 2 seconds.

5. 1. 0. 2 Baseline approach and our pro-

posed approach

In our experiments, we compare the perfor-

mances of our proposed approach with the baseline

Breach approach. We implemented our approach

in the tool ForeSee, which stands for FORmula

Exploitation by Sequence trEE for falsification.

Breach is a state-of-the-art falsification tool that

implements the classic falsification workflow we in-

troduced in §2. The quantitative robustness calcu-

lation in Breach is based on the robust semantics

given in Def. 3. Breach also encapsulates several

stochastic optimization algorithms, such as CMA-

ES, Simulated Annealing, etc. The implementation

of our ForeSee approach uses Breach only for inter-

facing with the Simulink model and for the calcula-

tion of quantitative robustness; instead, the calcu-

lation of QB-Robustness, and the implementation

of the MCTS algorithm are novel. Since CMA-ES

has proved to be the state-of-the-art stochastic al-

gorithm [39], we select CMA-ES as our backend

optimizer for the playout phase.

We apply the two approaches, ForeSee and



表 1: Benchmarks – STL specifications

Spec. ID Temporal specification in STL

AT1 2[0,30] (gear = 4 → speed > 35)

AT2 2[0,30] (gear = 4 → 3[0,5] (rpm < 4300))

AT3 2[0,30] (speed < 130 ∧ gear < 5)

AT4 2[0,30] (speed < 135 ∧ rpm < 4780)

AT5 2[0,30] (rpm < 600 → 3[0,10] (gear > 1))

AT6 2[0,30] (3[0,5](speed < 120 ∨ rpm > 3500))

AT7 2[0,30] (rpm < 4750 ∧ gear < 5)

Spec. ID Temporal specification in STL

AT8 2[0,10] (speed < 50) ∨3[0,30] (rpm > 2520)

AT9 3[10,30](speed < 50 ∨ speed > 60 ∨ rpm < 1000)

AT10 2[0,30] (gear = 4 → (speed > 35 ∧3[0,5] (rpm < 4000)))

AT11 2[0,30] (3[0,8] (gear = 1 → (speed < 20 ∧ rpm < 600)))

AT12 2[0,30] (gear < 3) ∨ 2[0,30] (speed < 135 ∧ rpm < 4780)

AT13 2[0,30] ((gear = 4 → 3[0,5] (rpm < 4000)) ∧ gear < 5)

AT14 2[0,30] (throttle = 0 ∨ brake = 0) → 2[0,30] (speed < 110)

Spec. ID Temporal specification in STL

AT15 2[0,30]((rpm < 4770 ∨ 2[0,1] (rpm > 1000)) ∧3[0,5] (gear < 5))

AT16 2[0,30] (gear = 4 → ((3[0,5] (rpm < 3000) ∧ (gear = 2 → speed < 20))))

AT17 2[0,5] (speed < 70 ∧ gear < 4) ∧ 2[10,20](rpm < 4780) ∧ 2[25,30](speed < 130)

AT18 2[0,30] ((gear = 4 → 3[0,5] (rpm < 4250)) ∧ (gear = 3 → 3[0,5] (rpm < 4700)) ∧ (gear = 2 → 3[0,5] (rpm < 4800)))

AT19 2[0,30] ((gear = 1 → speed < 80) ∧ (gear = 2 → speed < 90) ∧ (gear = 3 → speed > 20) ∧ (gear = 4 → speed > 30))

AT20 2[0,29] (speed < 100) ∨ 2[29,30](speed > 64) ∧ 2[0,30] (rpm < 4770 ∨ 2[0,1] (rpm > 700))

AT21 2[0,30] (throttle > 90 → 3[0,10] (throttle < 30)) → 2[0,30] (gear = 4 → 3[0,5] (rpm < 4000))

AT22 2[0,30] (throttle > 70 → 3[0,10](brake > 50)) → 2[0,30](gear = 4 → speed > 35)

Spec. ID Temporal specification in STL

AFC1 2[11,50] (mode = 1 → µ < 0.228)

AFC2 3[0,50] (PedalAngle > 40) → 2[11,50] (µ < 0.225)

AFC3 3[0,50] (EngineSpeed > 1000) → 2[11,50] (µ < 0.225)

AFC4 2[0,50] (EngineSpeed > 910 ∨ PedalAngle > 25) → 2[11,50] (µ < 0.225)

AFC5 3[0,50] (PedalAngle > 40) → 2[11,50] (3[0,8] (µ < 0.06))

AFC6 3[0,50] (PedalAngle > 40 ∧ EngineSpeed > 1000) → 2[11,50] (3[0,8] (µ < 0.06))

Spec. ID Temporal specification in STL

FFR1 2[0,5]((u1, u3 > 0 ∨ u1, u3 < 0) ∧ (u2, u4 > 0 ∨ u2, u4 < 0)) → 2[0,5](¬(x1 > 3.9 ∧ x1 < 4.1) ∧ ¬(x3 > 3.9 ∧ x3 < 4.1))

FFR2 ¬(3[0,5](2[0,2](x1 > 1.5 ∧ x1 < 1.7 ∧ x3 > 1.5 ∧ x3 < 1.7)))

Breach, to each benchmark specification reported

in Table 1. Since both approaches are based on

stochastic optimization, we repeat each experi-

ment for 30 times, as suggested by a guideline

for conducting experiments with randomized algo-

rithms [5]. For each experiment, both approaches

have been given a total timeout BM of 900 seconds

(see Alg. 2).

5. 1. 0. 3 Evaluation Metrics

As first evaluation metric, we compute the falsifi-

cation rate (FR) as the number of runs (out of 30)

in which the approach returns a falsifying input.

Therefore, FR is an indicator of the effectiveness

of an approach, i.e., it reflects the ability of an al-

gorithm to falsify the specification. As second eval-

uation metric, we compute the average time (sec-

onds), as average execution time of the successful

falsification runs. Therefore, the average time is an

indicator of the efficiency of the approach. We do

not report the number of simulations because these

are consistent with the execution time.

5. 1. 0. 4 Experiment Platform

In our experiments, we use Breach [13] (ver

1.2.13) with CMA-ES (the state of the art). Breach

accepts piece-wise constant signals as input for the

Simulink models; we use the same settings used



in falsification competitions [18]: we use piece-wise

constant signals with five control points for AT and

AFC, and with four control points for FFR. As con-

figuration of MCTS (see Alg. 2), we set the UCB1

scalar c to 0.2, and the playout budget BP to 10

generations. The experiments have been executed

on an Amazon EC2 c4.2xlarge instance (2.9 GHz

Intel Xeon E5-2666 v3, 15 GB RAM).

5. 2 Evaluation

We here analyze the experimental results using

three research questions (RQs).

RQ1 Does the proposed approach perform better

than state-of-the-art falsification approaches?

In this RQ, we aim at assessing whether the pro-

posed approach is indeed able to tackle the scale

problem in falsification and performs better than

state-of-the-art approaches. Table 2 reports, for

each specification benchmark, the falsification rate

FR and the average execution time of our proposed

approach ForeSee and of the baseline Breach. The

table further reports the difference of the two met-

rics between the two approaches. We highlight in

gray the best results in which ForeSee has an FR

of 15 units higher than Breach. We observe that

for 25 benchmarks out of 30, ForeSee has a better

FR, and in 15 of these the improvement is signif-

icant (selected in gray). Note that there are no-

table cases, such as AT3, AT13, AT16, and AT17,

in which Breach only finds at most two falsifying

inputs, while ForeSee finds always at least 29 fal-

sifying inputs. In four cases, Breach has a better

FR: while for AT8, AFC6, and FFR2 the difference

is minimal, it is quite large for AT14. We further

inspected such specification and its corresponding

model (see Table 1); we noticed that all the sub-

formulas in AT14 must be falsified to falsify the

whole specification†3, and they are all difficult to

†3 Note that all binary connectives of AT14 are dis-

be falsified. In such a case, there is no best sub-

formula sequence Σ: therefore, the time spent by

ForeSee in exploring different Σ does not provide

any improvement.

Regarding the time execution, there is no clear

trend among the different results: sometimes

ForeSee is faster, other times Breach is. However,

even in the cases in which ForeSee is slower, it is

still below the timeout by which it manages to find

a falsifying input (so, leading to better falsification

rates).

RQ2 Does the proposed approach solve the scale

problem effectively?

The benchmarks reported in Table 1 and exper-

imented in RQ1, predicate over signals having dif-

ferent scales and so they suffer from the scale prob-

lem. RQ1 showed that ForeSee is very efficient in

falsifying them. In this RQ, we want to make a

more systematic study of the effects of the scale

problem; indeed, the scale problem could manifest

itself in different ways, depending on the difference

of the order of magnitudes of the different signals

(e.g., speed [km/h] vs. rpm, or speed [km/h] vs.

rph). To assess this, we take six specifications from

Table 1 and we artificially modify their outputs:

namely, we multiply by 10k (with different k values

depending on the specification) the speed of AT1,

AT3, AT4, and AT9; the rpm of AT15; and the

EngineSpeed of AFC3. For each artificial rescaling,

both the Simulink model and the specification have

been changed.†4 We run ForeSee and Breach on

these rescaled benchmarks. Table 3 reports the ex-

perimental results for each k. The table also reports

the minimum, maximum, and mean results for FR

and execution time. We observe that the perfor-

junctions; indeed, A → B is the syntactic sugar

for ¬A ∨B.

†4 Note that k = 0 corresponds to the experimen-

tal result in Table 2, and we report it again for

reference.



表 2: Falsification performance comparison between Breach and ForeSee on benchmarks. Timeout: 900

secs. FR in (/30), time in secs.

Breach ForeSee

FR time FR time ∆FR ∆time

AT1 12 67.0 29 90.3 +17 +23.3

AT2 18 208.5 30 155.5 +12 -53.0

AT3 0 - 29 87.3 +29 -

AT4 8 414.0 30 376.6 +12 -37.4

AT5 13 44.7 30 159.0 +17 +114.3

AT6 14 630.5 20 545.9 +6 -84.6

AT7 20 24.9 30 5.8 +10 -19.1

AT8 17 418.5 13 547.0 -4 +128.5

AT9 9 298.6 29 208.0 +20 -90.6

AT10 14 99.4 30 89.7 +16 -9.7

AT11 17 58.1 30 39.6 +13 -18.5

Breach ForeSee

FR time FR time ∆FR ∆time

AT12 5 379.2 28 381.4 +23 +2.2

AT13 2 75.2 29 98.3 +27 +23.1

AT14 24 184.9 1 601.5 -23 +416.6

AT15 1 66.1 9 331.8 +8 +265.7

AT16 1 13.0 30 6.7 +29 -6.3

AT17 0 - 30 208.8 +30 -

AT18 18 160.0 24 234.3 +6 +74.3

AT19 15 81.8 30 154.3 +15 +72.5

AT20 1 97.7 5 286.2 +4 +188.5

AT21 10 239.0 29 425.5 +19 +186.5

AT22 13 72.0 30 113.3 +17 +41.3

Breach ForeSee

FR time FR time ∆FR ∆time

AFC1 10 532.2 12 458.0 +2 -74.2

AFC2 12 546.9 30 218.3 +18 -328.6

AFC3 8 727.6 28 232.5 +20 -495.1

Breach ForeSee

FR time FR time ∆FR ∆time

AFC4 7 634.5 22 500.3 +15 -134.2

AFC5 8 576.9 9 322.0 +1 -254.9

AFC6 10 518.2 6 344.2 -4 -174.0

Breach ForeSee

FR time FR time ∆FR ∆time

FFR1 7 132.1 7 399.3 +0 +267.2

Breach ForeSee

FR time FR time ∆FR ∆time

FFR2 30 38.0 27 348.0 -3 +310.0

mance of Breach, in terms of FR, is very sensitive

to the scale problem. Indeed, for all the specifica-

tions, FR decreases with increasing or decreasing

k; notable examples are AT3 and AT4 in which

Breach can (almost) always falsify with the mini-

mum k, but never falsifies with the maximum two

k. This is the demonstration of the effects of the

scale problem on falsification approaches that only

rely on quantitative robust semantics where the ro-

bustness values of different signals are compared.

By looking at the results of ForeSee, instead, we

observe that it is much more robust and its FR per-

formance is independent of the applied rescaling.

This clearly shows that our falsification approach

guided by QB-Robustness is successful in avoiding

the scale problem.

These results also allow us to show that the

naive approach based on normalization for solving

the scale problem does not work, as also reported

in [42]. Indeed, one may think that a solution for

tackling the scale problem could be to rescale the

signals in a way to make them have the same or-

der of magnitude. This is not a good approach.

Let us consider the results in Table 3c for AT4

(2[0,30] (speed < 135 ∧ rpm < 4780)). In this case,

speed is multiplied by 10k. We may think that the

best falsification result should occur when speed is

multiplied by 102, because this would make the two

signals both in the order of thousands. However,

this rescaling is the one giving the worst result. The

best result is actually given by the rescaling mak-

ing speed even smaller (i.e., k = −2 and k = −1).



表 3: Falsification performance under different scales. Each rescaled signal is rescaled by 10k.

(a) AT1: speed × 10k

Breach ForeSee

k FR time FR time

-2 30 126.5 26 77.5

-1 25 64.4 29 107.9

0 12 67.0 29 90.3

1 9 92.4 28 81.8

2 9 131.9 30 94.2

min 9 64.4 26 77.5

max 30 131.9 30 107.9

mean 17 96.4 28 90.3

(b) AT3: speed × 10k

Breach ForeSee

k FR time FR time

-3 30 124.9 30 81.2

-2 30 135.9 28 82.6

-1 1 136.7 28 101.6

0 0 - 29 87.3

1 0 - 30 103.4

min 0 124.9 28 81.2

max 30 136.7 30 103.4

mean 12 132.5 29 91.2

(c) AT4: speed × 10k

Breach ForeSee

k FR time FR time

-2 29 247.2 29 329.4

-1 29 243.5 28 332.2

0 8 414.0 30 376.6

1 0 - 29 377.6

2 0 - 29 333.2

min 0 243.5 28 329.4

max 29 414.0 30 377.6

mean 13 301.6 29 349.8

(d) AT9: speed × 10k

Breach ForeSee

k FR time FR time

-1 11 202.6 28 259.8

0 9 298.6 29 208.0

1 10 197.4 29 221.2

2 28 175.4 29 248.9

3 30 162.6 29 209.6

min 9 162.6 28 208.0

max 30 298.6 29 259.8

mean 18 207.3 29 229.5

(e) AT15: rpm × 10k

Breach ForeSee

k FR time FR time

-5 20 138.3 6 222.3

-4 13 158.1 10 258.8

-3 4 144.6 5 313.6

-2 0 - 9 268.6

0 1 66.1 9 331.8

min 0 66.1 5 222.3

max 20 158.1 10 331.8

mean 10 126.8 8 279.0

(f) AFC3: EngineSpeed ×10k

Breach ForeSee

k FR time FR time

0 8 727.6 28 232.5

-1 18 574.2 29 284.1

-2 29 401.2 29 211.5

-3 30 215.0 29 230.1

-4 29 198.2 30 236.2

min 8 198.2 28 211.5

max 30 727.7 30 284.1

mean 23 423.2 29 238.9

This means that the correct way for handling the

scale problem cannot be identified in advance, but

we need an approach as ours that learns during

falsification the best strategy.

RQ3 How do the hyperparameters of MCTS in-

fluence the performance of the proposed approach?

Our proposed approach is an instantiation of the

Monte Carlo Tree Search (MCTS) method [8, 28]

that can be configured with some hyperparame-

ters, namely the scalar c used by UCB1 (Line 12

in Alg. 2), and the playout budget BP (Line 21

in Alg. 2), both used for balancing between ex-

ploration and exploitation. Therefore, the per-

formance of MCTS could be affected by the val-

ues used for these hyperparameters. In this RQ,

we try to assess this. We selected three bench-

marks specifications (AT17, AT19, and AT21)

and varied one hyperparameter while keeping the

other fixed. Namely, we experimented with c ∈
{0, 0.02, 0.2, 0.5, 1} and budget BP = 10 (see Ta-

ble 4a), and with BP ∈ {2, 5, 10, 15, 20} and bud-

get c = 0.2 (see Table 4b). Looking at the results

of Table 4a for AT17 and AT21, there seems to

be some influence by the scalar c. In AT17, the

worst result in terms of FR is obtained when c is 0,

meaning that MCTS only focuses on exploitation.

AT17 is a specification that suffers from the scale

problem, as shown by the very bad performance of



表 4: Falsification performance under different

MCTS hyperparameters.

(a) Performance with varied c

AT17 AT19 AT21

c FR time FR time FR time

0 23 177.8 30 224.6 30 463.4

0.02 26 196.7 30 278.5 28 501.3

0.2 30 208.8 30 154.3 29 425.5

0.5 30 297.0 29 227.3 30 509.0

1.0 30 311.7 30 240.2 24 497.0

(b) Performance with varied BP

AT17 AT19 AT21

BP FR time FR time FR time

2 26 385.2 30 162.0 29 500.0

5 30 347.7 29 207.3 29 472.5

10 30 208.8 30 154.3 29 425.5

15 30 337.7 29 336.7 28 514.0

20 30 358.1 30 313.5 30 511.0

Breach in Table 2; for such a specification, we need

to perform some exploration to find the best Σ: this

explain the low performance of MCTS with c = 0.

On the other hand, the worst FR performance of

AT21 is given by the highest value c = 1 that re-

quires MCTS to spend a lot of time in exploration.

Since AT21 is not an extremely difficult specifica-

tion (indeed Breach has FR of 10 in Table 2), such

very conservative approach does not pay off, while

more greedy approaches (i.e., with lower c) have

better performance.

Looking at the results of Table 4b related to BP ,

it seems that there is no too much influence. The

only difference is given in AT17 with BP = 2 where

the FR is slightly lower than the other cases. This

means that, provided that a sufficiently large value

for BP is given, ForeSee is not too sensitive to it.

6 Related Work

Quality assurance of CPS has been actively stud-

ied, due to its great significance. Different ap-

proaches, including but not limited to model check-

ing, theorem proving, rigorous numerics, and non-

standard analysis [9,16,20,22,23,31,33], have been

proposed to solve the problem. However, due to the

scalability issue and existence of black-box compo-

nents, those approaches are not widely applied in

the real-world systems.

The optimization-based falsification approach in-

herits the search-based testing methodology, and

is much more scalable than pure verification-based

approaches. The key issue of search-based testing

is the exploration-exploitation trade-off. This is-

sue has been discussed for the verification of quan-

titative properties (e.g., [34]). In the falsification

community, there have also been a lot of works fo-

cusing on that, and these works tackle the prob-

lem from different perspectives. Metaheuristics

refers to high-level heuristic strategies that utilize

heuristics to improve the search efficiency. Several

metaheuristic strategies have been applied in fal-

sification, such as Simulated Annealing [1], tabu

search [10], and so on. Coverage-guided falsifica-

tion [2, 10, 15, 29] aims to guide the search using

some coverage metrics, so that the search space is

sufficiently explored. Recently, machine learning

techniques have also been applied to falsification to

enhance the search ability. For instance, Bayesian

optimization [3, 11, 36] utilizes an acquisition func-

tion to balance exploration and exploitation; Rein-

forcement learning [27,37] naturally emphasizes on

exploration.

The scale problem is a recognized issue [12,21,40]

that is known to severely affect the performance of

falsification. In [40], we proposed a multi-armed

bandit approach to solve the problem in a specific

setting, that is, safety properties with Boolean con-



nectives: 2I (φ1 ∧ φ2) and 2I (φ1 ∨ φ2). The ap-

proach is not applicable to formulas having more

nested sub-formulas, or even connectives having

more operands; therefore many of the benchmarks

we used in §5. 2 fall out of the scope of [40]. The

techniques introduced in [12, 21] rely on explicit

declaration of input vacuity and output robustness.

Compared to their approaches, our method does

not need that, but we learn the significance of each

signal through tree exploration and reward compu-

tation.

MCTS, as an effective search framework, has

been applied in testing hybrid systems. In [30], the

authors applied an adaption of MCTS in testing,

namely, adaptive press testing, to detect the po-

tential dangerous cases of airborne collision. A re-

cent study of MCTS on hybrid system falsification

is [39]. There, the authors discretized the search

space to construct the search tree, and then ap-

plied MCTS to explore different sub-spaces. Com-

pared to their approach, our work aims to tackle

the scale problem and so we exploit the structure of

specification formulas to construct the tree search

framework.

7 Conclusion and Future Work

Optimization-based falsification is a widely used

approach for quality assurance of CPS, that tries

to find an input violating a Signal Temporal Logic

(STL) specification. It does this by exploiting the

quantitative robust semantics of the specification,

trying to minimize its robustness. The perfor-

mance of falsification is affected by the scale prob-

lem in the presence of the comparison of robust-

ness values of sub-formulas predicating over sig-

nals having different scales. In this paper, we pro-

pose QB-Robustness, a new STL semantics that

does not suffer from the scale problem, because

it avoids such comparison. The computation of

QB-Robustness requires to specify a sub-formula

sequence telling for which sub-formulas the quanti-

tative robustness must be computed. We then pro-

pose a Monte Carlo Tree Search (MCTS)-based fal-

sification approach that synthesizes a sub-formula

sequence for QB-Robustness, and uses this for guid-

ing numerical optimization. Experimental results

show that the proposed approach achieves better

falsification results than a state-of-the-art falsifica-

tion tool that uses standard quantitative robust se-

mantics.

In the analysis of RQ1, we observed that, when

the specifications have a particular structure, our

approach has no advantage and, actually, it could

decrease the performance by trying to find a best

sub-formula sequence that does not exist for the

current initial sampling. As future work, we plan

to devise some heuristics that could handle these

cases: for example, we could perform a better ini-

tial sampling (see §2. 1) that could provide a better

initial guidance.
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