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An Experimental Implementation of

Self-adjusting Bidirectional Transformations

Huu-Phuc Vo, Hiroyuki Kato, Soichiro Hidaka, Zhenjiang Hu

Bidirectional transformations provide a novel mechanism for synchronizing and maintaining the consistency

of information between source and view. Despite many advantages, bidirectional transformations are limited

in achieving incremental computing that concerns maintaining the source-view relationship of a program as

the source of a program is changed. Recent work on incremental computing such as self-adjusting compu-

tation developed useful techniques for writing programs which can adapt their view to any small or large

change in the source. In this article, we realize that bidirectional transformations on trees can be made

more efficient by using self-adjusting techniques. The underlying systems of forward and backward trans-

formations are represented with dynamic dependence graphs that record the data dependencies and control

dependencies. When the source or the view is modified, a change propagation algorithm will update the

connected view or source, and the dynamic dependence graphs by propagating the changes through the

graphs and re-executing code where necessary. The idea is to use forward and backward dynamic depen-

dence graphs to identify and re-execute the parts of the computation that are affected by modifications on

the source or the view. We refer to this approach as self-adjusting bidirectional transformations and show

that it is practical and efficient.

1 INTRODUCTION

Bidirectional transformations [13] [20] provide a

novel mechanism for synchronizing and maintain-

ing the consistency of information between source

and view. Bidirectional transformations can be

used in many interesting applications, such as the

well-known view updating mechanism which has

been intensively studied in the database commu-

nity [10] [15] [21] [22] [28], interactive user interface

design [32], coupled software transformation [27],

the synchronization of replicated data in differ-

ent formats [20], and presentation-oriented struc-
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tured document development [26]. Bidirectional

graph transformation approaches can be distin-

guished at least according to two different sorts

[13]: reversible graph transformation languages and

truly bidirectional graph transformation languages.

Triple Graph Grammars (TGGs) [37] [38] are in

the class of bidirectional transformation languages

[14]. TGGs define a language of related pairs of

graphs and derive pairs of uni-directional forward

and backward transformations.

Despite many advantages, bidirectional transfor-

mations are limited in achieving incremental com-

puting that concerns maintaining the source-view

relationship of a program as the source of a pro-

gram is changed. In order to maintain and syn-

chronize the consistency of source and view, a bidi-

rectional transformation consists of a pair of a for-

ward and a backward transformation in the typical



setting, the changes will be updated to the view

or reflected back to the source by completely re-

computing the forward or backward transformation

when the source or view is changed by updates. In

such cases, the forward and backward transforma-

tions are re-computed from scratch.

Lenses are one the most popular approaches to

define bidirectional transformations between data

models, and have been proposed by Foster et al.

[20] as a linguistic solution to the view-update prob-

lem. Every lens program can be read as a function

mapping sources to views as well as one mapping

updated views back to updated sources. Edit lenses

are one of the few approaches that operate directly

on edits and work with descriptions of changes to

structures rather than with the structures them-

selves [24].

With this approach, no matter how small or large

modification is applied to the source, the forward

and backward transformations are re-computed

from scratch. Given some source data, the for-

ward and backward transformations, without any

modifications to the view, transformations are com-

puted in the initial computation. When the source

or the view is modified, the only way to update the

modifications to the view or reflect them back to

the source is to re-compute from scratch without

reusing the previous computations.

Recent work on incremental computing such

as self-adjusting computation [5] developed use-

ful techniques for writing unidirectional programs

which can adapt their view to any small or large

change in the source. The self-adjusting technique

is useful in circumstances where a small change in

the source will lead to a small change in the view.

In some restricted cases, the small changes from the

source can not avoid a complete re-computation of

the view; but in most cases, the previous computa-

tions can be reused to produce the view with the

relative changes from the source. The self-adjusting

technique is used for programs which can respond

to the modifications to their source data by updat-

ing the dynamic dependence graphs (DDGs) and

carrying out the change propagation. DDGs are

graphs that represent the relationships between the

data and control dependencies. They can be built

as the program executes and used to update the

computation and the view when necessary.

A complete list of references on incremental com-

putation can be found in the bibliography of Ra-

malingam and Reps [35]. The most effective tech-

niques to solve the incremental computation prob-

lem are based on dependence graphs, memoization,

and partial memoization [4]. Different techniques

for incremental updates exist such as static depen-

dence graphs (Demers et al. [16] and Reps [36];

Hoover [25]) and memoization (Pugh and Teitel-

baum [34]; Bellman [11]; McCarthy [31]; Michie

[33]) which can apply to any pure functional pro-

gram. Building on Pugh and Teitelbaum’s work,

applications of various forms of memoization to in-

cremental computation have been investigated [1];

Liu et al. [29]; Heydon et al. [23] [7].

A partial evaluation approach to incremental

computation that requires users to fix the parti-

tion of the source on which the program will be

specialized is introduced by Sundaresh and Hudak

[42]. The limitation of this approach is that the

modifications to the source must only within a pre-

determined partition. In the context of lambda cal-

culus, Field and Teitelbaum have presented formal

reduction systems which optimally use partially

evaluated results [19] [18]. Incremental computa-

tion has also been studied in artificial-intelligence

and logic-programming communities with general-

purpose techniques (Stallman and Sussman [40];

Doyle [17]; McAllester [30]).

In this paper, we present the idea of self-adjusting

lenses which applies the self-adjusting technique to

bidirectional transformations. We follow linguis-



tic approach by building lenses with both a for-

ward function and a backward function, with an

underlying system of the self-adjusting computa-

tion. This system uses the dynamic dependence

graphs to track the controls and data dependencies

in an execution, combine with memoization by re-

membering function calls and their results. The

modifications to the source or the view of bidi-

rectional programs are translated one at a time.

An additional challenging is how to update the dy-

namic dependence graphs and dually propagate the

changes from source and view. This work is one

step to experimentally combine the self-adjusting

technique and lenses as well as to introduce the

methods to construct self-adjusting lenses, that are

practical and efficienct, and includes a test suite

and experiments with self-adjusting lenses.

Outline: In this paper, we realize that bidi-

rectional transformations on trees can work more

efficiently by using self-adjusting techniques. We

model the bidirectional transformations on tree-

structured data as lenses [20] which map the con-

crete tree into a simplified abstract view in one di-

rection, and map the modified abstract view and

the original concrete tree to a modified concrete

tree in the appropriate direction. We give an intro-

duction to bidirectional transformations, and the

incremental computing problem in Section 1. We

state preliminary result of adaptive programming

and self-adjusting computations for the incremental

computing problem and describe lenses which will

be used for experiments and evaluation in Section

2. In Section 3, we talk about the self-adjusting

lenses, and the method to transform the pure lenses

to self-adjusting lenses. We show the implementa-

tion, experiments and the evaluation in Section 4.

In section 5, we present related work on bidirec-

tional transformations and self-adjusting computa-

tion. We conclude the paper and discuss the results

in Section 6.

2 PRELIMINARY

2. 1 Self-adjusting computation

Self-adjusting computation has been applied to

various application domains, including dynamic al-

gorithms, motion simulations, machine learning,

and incremental invariant checking [39]. These ap-

plications confirm that the self-adjusting approach

can be effective for a broad range of practical ap-

plications.

In the adaptive functional programming and self-

adjusting approaches, the key point is a modifiable

reference (or modifiable in short), which holds the

data that can change overtime. A constraint over

modifiables is that they are not be written no more

than once within the self-adjusting program.

Dynamic dependence graphs: The underlying of

forward and backward transformations are repre-

sented with dynamic dependence graphs (DDGs)

that record data dependencies and control depen-

dencies. When the source or the view is modified,

a change propagation algorithm will update the

DDGs and the view by propagating the changes

through the graphs and re-executing code where

necessary. The idea is to use forward and back-

ward DDGs to identify and re-execute the parts of

the computation that are affected by modifications

on source or view. The dynamic dependence graphs

is described more precisely in [9]. Dynamic depen-

dence graphs can be viewed as a representation of

the data and control dependencies. DDGs of a pro-

gram can be built as it executes by tracking the

executed operations, and used to update the com-

putation and the view when the sources are modi-

fied. The core primitive of self-adjusting programs

for operating on changeable data are: the mod op-

eration that creates a modifiable, the read and the

write operations that provide access to the modifi-

able. The dynamic dependence graphs are used to

identify and re-execute the parts of computations



which are affected by modifications.

Structure of dynamic dependence graph: The

DDGs of computations can be represented as a

dynamic function call tree with nodes and edges.

The nodes of the DDGs represent function calls.

The edges are relations between computation data

and function calls that depend on them and rep-

resent the caller-callee relationship between func-

tion calls as well. Edges between computation data

(i.e., sources, intermediate results) and function

calls represent data dependencies: if a function call

reads a piece of data, then there is an edge from

such data to that call. With this structure, the

DDGs can monitor source data, function calls and

the relations between them.

Change-propagation algorithm: With the given

dynamic dependence graphs of a program and

set of modified source modifiables. The change-

propagation can track the controls and data depen-

dencies in an execution of a program. The idea of

the change-propagation is to re-evaluate the reads

which are affected by the source modifications in

the sequential execution order.

Self-adjusting program: Given a purely func-

tional program, the DDGs can be constructed by

executing it with the source. The self-adjusting

program is defined when the source is changed dur-

ing the computation, the computation and view will

be updated by performing the change propagation

through the dynamic dependence graphs.

2. 2 Lenses

In this section, we introduce several lenses such

as the identity lens, the head lens, the tail lens, the

filter lens, the hoist lens, and the plunge lens. Those

lenses have all been defined by Nate Foster et al.

[20].

First, we phrase basic lens definitions which are

specified together with a type of the form C ⇀↽ A,

where C is a set of concrete source structures and

A is a set of abstract view structures. Second, the

notion of well-behavedness is defined so that it can

convey how the get and putback parts of a lens

should behave in concert. The forward and back-

ward evaluations should satisfy the bidirectional

properties. Such properties are called PutGet and

GetPut laws in the lens framework. For example,

if we use get to extract an abstract view a from a

concrete view c and then use the putback part to

push the same a back into c, we should get c back.

The meaning of the notations l ↗ and l ↘ is that

the get part of a lens lifts an abstract view out of a

concrete one, while the putback part pushes down

a new abstract view into an existing concrete view.

When f is a partial function, we write f(a) ⊑ b if

f is not defined on argument a or f(a) = b.

Well-behaved lenses: Let l be a lens, C and

A be subsets of fixed set V . We say that l is a

well-behaved lens from C to A, written l ∈ C ⇀↽ A,

if it maps arguments in C to results in A and vice

versa.
l ↗(C) ⊆ A (GET)

l ↘(A× C) ⊆ C (PUT)
and its get and putback functions obey the following

laws:

(GETPUT)

l ↘(l ↗ c,c)⊑ c for all c ∈ C

(PUTGET)

l ↗(l ↘(a,c))⊑ a for all (a, c)∈ A× C

In this article we represent lists as trees by us-

ing a standard cons-cell encoding, and introduce

some derived lenses which are used for making

self-adjusting lenses. Then we define and imple-

ment those lenses. There are many different lenses

such as generic lenses (i.e. identity, composition,

conditional, and recursion), structure manipulation

lenses which modify the shape of the tree near the

root (i.e. hoist, plunge), tree navigation lenses

which apply different lenses to different parts of the

tree, or one lens deeper in the tree (i.e. map, fil-



ter), “database-like” lenses (i.e. flatten, join), and

structure replication lenses (i.e. merge, copy).

In practice, there will be cases when we want to

apply the putback function but the concrete views

(or source) is not available. In this case, a place-

holder Ω, pronounced missing, handles missing con-

crete views. For example, l ↘ (a,Ω) means that

”lens l creates a new source from the information

in the abstract view (or view)”

Identity lens: Identity lens is the simplest one.

The identity lens is a bijective lens from any set to

itself. The concrete view c and the abstract view

will be copied in the get direction and and in the

putback direction, respectively.

表 1 Identity lens

id↗ c = c

id↘(a, c) = a

∀C ⊆ V.id ∈ C
Ω⇐⇒ C

Head and tail projections: This is very simple

lenses for projecting the head and tail of the list.

The first list lenses extract the head or tail of a

cons cell list. The lens hd expects a default tree,

which it uses in the putback direction as the tail of

the created tree when the concrete tree is missing;

the get direction, it returns the tree under *h. The

lens tl works analogously.

表 2 Head tail projections

hd d = focus ∗h{∗t 7→ d}

∀C,D ⊆ T.∀d ∈ D. hd d ∈ (C :: D)
Ω⇐⇒ C

tl d = focus ∗t{∗h 7→ d}

∀C,D ⊆ T.∀d ∈ C. tl d ∈ (C :: D)
Ω⇐⇒ D

Filter lens: Given a predicate p and the source,

in the get direction, this lens produces the view by

keeping all the elements of the source that satisfy

the predicate p. On the other hand, the putback

direction, the putback function of filter lens takes

the view and the source, then it restores the fil-

tered part of the source. In case the source is miss-

ing, the putback function restores the source and

propagates the changes made to the view using Ω.

表 3 Filter lens

filter pd = fork p id (const {}d)

∀C ⊆ T.∀p ⊆ N.∀d ∈ C\p.
filter pd ∈ (C |p .C\p)

Ω⇐⇒ C |p

Hoist lens: The hoist lens is used to shorten a

tree by removing an edge at the top. In the get

direction, given a edge n, it remove the edge n and

returns the child of n. On the other hand, the put-

back function restores the edge n, the value of old

source is ignored and a new one is created with the

edge n pointing to the given view.

表 4 Hoist lens

(hoist n)↗ c = c(n)

(hoist n)↘(a, c) = {n 7→ a}

∀C ⊆ T.∀n ∈ N. hoist n ∈ {n 7→ C} Ω⇐⇒ C

Plunge lens: Conversely, the plunge lens is used

to deepen a tree by adding an edge n at the top of

the tree. In the get direction, a single edge n points

to the source tree to form a new tree. In the put-

back direction, the value of a source tree is ignored

and the result of the plunge is the view tree which

has exactly one subtree.

表 5 Plunge lens

(plunge n)↗ c = {n 7→ c}
(plunge n)↘(a, c) = a(n)

∀C ⊆ T.∀n ∈ N. plunge n ∈ C
Ω⇐⇒ {n 7→ C}

3 SELF-ADJUSTING LENSES

In previous sections, we introduce the self-

adjusting technique which is very useful for the



incremental problem when the modifications on

source leads to relative changes from view, as well

as the lenses. In this section, we present a brief

overview of the self-adjusting lenses. The idea for

self-adjusting lenses is to apply the self-adjusting

technique to both the get direction and the putback

direction in bidirectional transformation. The un-

derlying system of the self-adjusting computation

is using the dynamic dependence graphs to track

the controls and data dependencies in an execution

combining with the memoization by remembering

function calls and their results.

3. 1 The Interface

We present the self-adjusting library which is im-

plemented from Acar et al. work [8]. The im-

plementation of the self-adjusting library is used

for encoding the self-adjusting lenses and testing

them with several sources as well as modifications.

All the implementations are written in OCaml pro-

gramming language.

First, in order to show the practical use of the

self-adjusting lenses, we implement identity, head,

tail, hoist, plunge, and filter lenses as self-adjusting

lenses by using the self-adjusting library. Second,

we test and compare the pure functional lenses and

self-adjusting lenses to present the efficiency of the

self-adjusting lenses with several test suite. The

source data that will be the source for the test suites

is encoded as cons cell list of integer.

3. 2 Transformation

The lenses are implemented as pure functional

programs which are written in Ocaml. Then we

transform those pure functional programs into self-

adjusting programs by using the Self-adjusting li-

brary which is re-implemented in Ocaml (the orig-

inal self-adjusting library is implemented in SML).

This transformation consists of two steps.

First, we need to determine what parts of the

source data will be changed over time and place

it into modifiable references. By doing this, the

source will be monitored to any changes. Second,

we specify the read of the modifiables from the orig-

inal programs. We place the results of each expres-

sion into modifiable. The new modifiables which

hold all the changeable data in the computation

will be created because the reads are change com-

putation.

After the initial run, the source data can be

changed and then the program need to update

its view by performing change propagation. The

source modification process can be repeated as

many times as desired. The effectiveness of

the dynamic dependence graphs and the change-

propagation in the self-adjusting lens vary from the

position of modifications. If the modifications take

place at the beginning of source, the change propa-

gation will require a from scratch execution. If the

new element is insert into the source list at the end

or in the middle, the change propagation will take

O(log n) or O(n) expected time, respectively.

3. 3 Encoding of Self-adjusting Lenses

For the self-adjusting lenses, one of the difficul-

ties is how to monitor the modifications to both

source and view. Given a pure functional lens, we

first apply a two step transformation to get the self-

adjusting lens.

In the forward transformation, the source of the

self-adjusting lens is monitored as the changeable

source by placing it into the modifiables. As the

forward transformation of self-adjusting lens exe-

cutes, the underlying system represents the data

and control dependencies in the execution via a

dynamic dependence graphs. When the source to

the lens changes, a change-propagation algorithm

updates the dependence graphs and the view by

propagating the modifications through the dynamic

dependence graphs and re-executing the computa-



tions where necessary.

In the backward transformation, the original

source and the view of the self-adjusting lens are

used to produce the new modified source. In this

case, suppose that no modifications are made to

the view, the putback function executes to produce

the same source. In such direction, we consider the

modified view and the original source as the source

and the modified source is the view.

The problem is how to represent the dynamic de-

pendence graphs and the change-propagation for

both forward and backward transformations so that

with any modifications to the source or view, they

can be reflected back to the source or updated to

the view.

With the self-adjusting approach Acar et al.

2009 [4], we can separately transform a pure func-

tional lens to self-adjusting lens. The main idea to

solve this problem is to represent two dynamic de-

pendence graphs, one for the forward transforma-

tion and another for the backward transformation.

Given the lens and the source, the forward dynamic

dependence graphs (FDDGs) represent the source

of the self-adjusting lens as source. In the other

hand, without any modifications to the view, we

represent the original source and the view of the

lens as the backward dynamic dependence graphs

(BDDGs) to monitor the changes. In the first case,

when the source of the lens is modified, the FDDGs

are updated and then propagate the changes to the

view. Because the view is updated from the source

modifications, the BDDGs need to be updated from

the modified source and modified view in the for-

ward transformation. In the second case, on the

contrary, when the view of the lens is modified,

the BDDGs are updated and then propagate the

changes to the source. The FDDGs need to be up-

dated from the modified view and original source

because the source is updated from the view modifi-

cations.In both forward and backward transforma-

tions, the FDDGs and BDDGs are consistent and

synchronized.

4 IMPLEMENTATION AND EXPER-

IMENTS

In this section, we will explain how to implement

the self-adjusting lenses such as identity lens, head

lens, tail lens, hoist, plunge and filter lens. We will

demonstrate experiments of those lenses, evaluate

and discuss the experimental results in later parts

of this section.

4. 1 Implementation of Pure Lenses and

Self-adjusting Lenses

We prepare two different versions for each lens

that we use as examples in the implementation sec-

tion. The first version is the implementation of the

pure functional lenses, while the second version is

of self-adjusting lenses.

First, we introduce the construction and some ex-

amples of the pure functional lens which are imple-

mentented in straightforward way. We choose the

head lens for the example in this section. Given a

source list the forward transformation of the head

lens produces the first element of the source list as

view in case the source list is non empty or returns

an empty list in case the given source list is empty.

In the backward transformation, the new source is

created by concatenating the view and the tail of

the original source without the first element.

Second, we will explain how to implement an self-

adjusting lens from the pure functional lens. Since

the self-adjusting technique is used to place the

sources to the modifiables for monitoring, we dis-

tinguish the source of the forward transformations

as original source from the source of the backward

transformation as original source and view.

Considering the code for the pure functional head

lens and a self-adjusting lens, as shown in Figure

1. The transformation from pure functional lens



図 1 The implementation of pure functional and self-adjusting version of filter lens.

to self-adjusting lens is done in two steps. 1) We

First generate a lists of modifiables by placing each

element of the list into a modifiable. By designing

this kind of structure, the modifiable list can be

inserted or deleted elements to and from by users.

2) The second, we change the program so that by

using the read, value of the modifiable can be ac-

cessed. In order to check whether the source list

is empty, the self-adjusting head lens uses a read,

then write the result to desitnation d. A call to

mod (through modl) creates the modifiables that

destination d belongs to. These modifiables form

the view list which now is a modifiable list.

Similarly, we can transform all the lenses de-

scribed in this paper from pure functional lenses

図 2 Initial forward transformation of Identity

lens

to self-adjusting lenses using the two above steps.



図 3 Initial backward transformation of

Identity lens

図 4 Initial forward transformation of Filter

lens

図 5 Initial backward transformation of Filter

lens

4. 2 Experiments

We conduct experiments of self-adjusting lenses

by using sources of different sizes. The source lists

of integer for the lenses are randomly generalized in

many different sizes. The lenses sequentially con-

sume the sources of sizes (from 1 to 65,000). In

general, we use the same sources for the pure and

self-adjusting lenses in the experiments. As the self-

adjusting lenses must execute at the first time to

図 6 Insertion into source at the end of Filter

lens in forward transformation

construct the dynamic dependence graphs, we com-

pare the initial run of pure functional lenses and

self-adjusting lenses.

In order to measure the effectiveness of the self-

adjusting lenses, we modify the sources of both ver-

sions of lenses with the insertion into several po-

sitions. With the modified source, the pure func-

tional lenses re-execute and the self-adjusting lenses

propage the changes to update their views. The

effectiveness of the self-adjusting techinique was

proved in the publication of Acar et al. [8].

We demonstrate the result of the initialization of

the forward and backward transforamtions of the

identity lens and the filter lens. We prepare the

random source in different sizes, from 1 thousand to

65 thousands of elements. In Figure 2 and Figure 3,

we present the experimental results of the forward

and backward transformations of filter lens. Like-

wise, results of initial bidirectional transformations

of filter lens are showed in Figure 4 and Figure 5.

In Figure 6 and Figure 7, we show that the self-

adjusting bidirectional transformations are practi-

cal and efficient. The performance of self-adjusting

lens is better than the pure functional lens when in-

sertion into the source or view at the end. The self-

adjusting lens is more effective than the pure func-

tional lens because it represents all source data and

control dependencies in dynamic dependence graphs

in the initialization phase while the pure functional

lens does not save any information during its exe-



図 7 Insertion into source at the end of Filter

lens in backward transformation

cutions. As a result, when the source or the view of

the lens is modified, instead of re-computing from

scratch, the self-adjusting lens can re-use the previ-

ous computations and show the better performance

than pure functional lens.

4. 3 Evaluation and Discussion

In the experimental section, we compare the

initialization of the pure functional lenses and

self-adjusting lenses. In the first run, the pure

functional lenses are more effective than the self-

adjusting lenses because the self-adjusting lenses

save computations and data for later use. From

the second runs, the self-adjusting programs are

more effective than the pure programs theoracti-

cally. However, depend on the postion of modifi-

cations, the effectiveness of the self-adjusting pro-

grams can be vary. For instance, when we insert

new value to the beginning of the source, it means

that from the next run, the program will be re-

run from scratch. Because in the initial run, we

construct the dynamic dependence graphs which

represent the data dependence and control depen-

dencies as function call tree. The modification to

the beginning of the source affects shallow function

call in tree, so the change propagation is slow in

such case. In other case, if we modify the source

to the end, this affects the deep function call tree,

the change propagation in this case is faster than

previous case.

5 RELATED WORK

Bidirectional transformations have been dis-

cussed and studied in many different areas and

communities including heterogeneous data synchro-

nization [20], software model transformation [41],

constraint maintenance for graphical user interfaces

[32], interactive structure editing [26] and relational

databases [12].

In the area of programming languages, Foster

et al. [20] proposed bidirectional transformation

approach, called lens, to solve the classical view-

updating problem: when a concrete data model is

abstracted into a view, the question is how modifi-

cations made to the view can be propagated back

as modifications to the original model. Lenses must

include two functions, one for extracting the ab-

stract view from the concrete view, called get func-

tion, and another for putting back the modified ab-

stract view back into the original concrete view to

produce the updated concrete view, called putback

function. Their linguistic approach was developed

to support the development of bidirectional trans-

formation on strings and trees.

The concept of adaptive computation was first

introduced by Acar et al. 2002 [6], called adap-

tive functional programming (AFP), generalized

dependence-graph approaches by introducing dy-

namic dependence graphs (DDGs) and providing

a change-propagation algorithm for them. AFP

can be applied to any purely functional program.

A change-propagation algorithm that can update

the dependence structure of the dynamic depen-

dence graph by inserting and deleting dependencies

where necessary, makes applications of adaptive

functional programs be possible. Adaptive func-

tional programs can be written by using type-safe

linguistic facilities that guarantee safety and cor-

rectness of change propagation. The two papers,

one on an SML library for self-adjusting compu-



tation (Acar et al. 2006a [2]) and the other on

efficient implementation of the library (Acar et al.

2006b [5]), are based on Acar’s thesis (Acar et al.

2005 [3]). The later self-adjusting work is on ex-

perimental analysis (Acar et al. 2009 [4]) which

combines two papers above.

Our work was greatly inspired by work on self-

adjusting computation (Acar et al. 2006 [2]). Un-

like ordinary functional programs, the bidirectional

programs allow modifications to either modify the

source or the view before updating to or reflecting

back to the view or source, respectively. How to

update the dynamic dependence graph and propa-

gate the changes from source and view dually is a

challenge. This work is one step to experimentally

combine the self-adjusting technique and lenses.

6 CONCLUSION

This article reports our first experiments on self-

adjusting lenses using self-adjusting computation

approach to the problem of incremental compu-

tation. The self-adjusting lenses can respond the

source data quickly and effectively. We show

that the pure functional lenses can transform to

self-adjusting lenses in separate transformations.

This article describes the method to construct self-

adjusting lenses by using the Ocaml self-adjusting

library and demonstrates the experiments of the

self-adjusting lenses. The future work is how to

unify separate self-adjusting transformations when

constructing self-adjusting lens so that the modifi-

cations in either source or view can update or reflect

back to the view or source in forward and backward

transformation, respectively.
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