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A functional language with graphs as

first-class data

Jin Sano, Kazunori Ueda

Graphs are a generalized concept that encompasses more complex data structures than trees, such as dif-

ference lists, doubly-linked lists, skip lists, and leaf-linked trees. Normally, these structures are handled

with destructive assignments to heaps, as opposed to a purely functional programming style. We proposed

a new purely functional language, λGT , that handles graphs as immutable, first-class data structures with

a pattern matching mechanism based on Graph Transformation. Since graphs can be more complex than

trees and require non-trivial formalism, the implementation of the language is also more complicated than

ordinary functional languages. λGT is even more advanced than the ordinary graph transformation sys-

tems. We implemented a reference interpreter, a reference implementation of the language. We believe this

is usable for further investigation, including in the design of real languages based on λGT . The interpreter

is written in only 500 lines of OCaml code.

1 Introduction

λGT is a functional language to support graphs

as first-class data. λGT enables us to construct and

pattern match graphs as well as Algebraic Data

Types. The key features of λGT are the following.

Data structures more complex than trees. Alge-

braic Data Types (ADT) in purely functional lan-

guages can only represent tree structures. On the

other hand, in λGT , not just lists and trees but also

difference lists, skip lists [20], doubly linked lists,

leaf linked trees, and threaded trees, etc, can be

handled succinctly.

Graphs as first-class data. Not pointers/refer-

ences to a global heap but graphs are first-class,

i.e., values, in this language. That is, graphs can

be dynamically created, graphs can be bound to

variables, be input and output of functions, and be
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dynamically discarded.

Powerful pattern matching mechanism. When

matching ADTs in functional languages, we can

only use the patterns that allow only the matching

of a fixed region near the root of the structure. On

the other hand, we enabled more powerful match-

ing based on Graph Transformation [6] [21].

Syntax-driven semantics. To establish the se-

mantics of λGT , we incorporated that of Hyper-

LMNtal [31] [25] to call-by-value λ calculus. Unlike

definitions common in conventional graph transfor-

mations, such as the triplet of a set of vertices, a

set of sets of vertices (hyperlinks), and a labeling

function, the graphs in HyperLMNtal can be con-

structed compositionally from sub-graphs. These

syntax and semantics follow the style of π-calculus

[23] rather than traditional algebraic graph trans-

formation formalism. This make it easier to incor-

porate graphs into λ-calculus.

Type System. The type system of λGT incorpo-

rates graph grammar and use infinite decent. How-

ever, in this paper, we focus on the language and

do not mention much about the type system [26].

First-class functions. Functions are first-class

data in λGT as well as in other functional languages.

Immutability. Graphs are immutable in this lan-



guage. We do not rely on destructive rewriting

but employ immutable composing and decompos-

ing with pattern matching.

Contributions

λGT can handle graphs. Since graphs can be

more complex than trees, it requires non-trivial for-

malism. Thus its implementation is also more com-

plicated than the ordinary functional languages.

λGT is even more advanced than the ordinary

graph transformation systems. Graph transforma-

tion systems rewrite one global graph with rewrit-

ing rules. On the other hand, in λGT , graphs are

local values that can be decomposed by pattern

matching with possibly multiple wildcards, passed

as inputs of functions, and composed to construct

larger graphs from the subgraphs. Therefore, how

to trivial to implement the language is not trivial.

Thus, we implemented a reference interpreter,

a reference implementation of the language. We

believe this is usable for further investigation, in-

cluding in the design of real languages based on

λGT . The interpreter is written in only 500 lines of

OCaml [14] code, which is strikingly concise†1.

Structure of the paper

The rest of this paper is organized as follows. Sec-

tion 2 introduces λGT informally. Section 3 gives

the formal syntax and the operational semantics

of λGT . In Section 4, we give more detailed ex-

planation about the examples we have introduced

informally in Section 2. Section 5 describes why

we need such an interpreter. Section 6 explains the

implementation. Section 7 discusses related work

and indicates our expected future work.

2 Informal introduction to λGT

In this section, we introduce λGT informally. We

will give the formal syntax and semantics of the

language later in Section 3.

Consider the case where we want to enable

adding an element to the end of a list efficiently.

In imperative languages, we will prepare a pointer

†1 The source code is available at

https://github.com/sano-jin/lambda-gt-alpha.

We have also implemented a visualizing tool

that runs on a browser, which is available at

https://sano-jin.github.io/lambda-gt-online/.

that points to the address of the last node (sentinel

node) of the list. Adding a new element to the list

can be done with the destructive assignment to the

sentinel node with a new number and the address

to the newly created sentinel node. We also need

to update last ptr to point to the new sentinel

node. These low-level operations are tiresome and

prone to errors, e.g. we can easily forget to update

last ptr.

1 2 3 4
sentinel

last ptr

head ptr

In λGT , such data structure can be abstracted to

a difference list ; a list with a link to the last node,

as follows. Adding a new element to the list can be

understood as concatenating a singleton list to the

list.

C C C

1 2 3

(1)

We can represent a program with a function that

takes two difference lists and returns the concate-

nated difference list as the following. Notice that

the input and output of the function are not point-

ers to a global heap but graphs as local values. λGT

can handle graphs as first-class data (i.e., values)

in such a manner.

λ x y

x y

C

1

C

2

−→val λ y

C

1

y

C

2

−→val C C

1 2



nodes −→
r1

nodes −→
r2

C nodes

nat

Fig. 1 Production rules for a difference list

Although we will not discuss in detail in this pa-

per, we have also proposed a new type system for

the language in [26], which is extended from the

typing framework for graph transformation based

languages [8] [9] [32]. In this type system, the types

of graphs are defined using graph grammar. For

example, the type of a difference list can be defined

using the production rules in Figure 1.

Informally, we can say graph has a type if we

can obtain the graph from the type applying pro-

duction rules zero or more times. The following

example shows that we can obtain a difference list

with two elements using the production rules.

nodes

⇝r2

C nodes

nat

⇝r2

C

nat

C

nat

nodes

⇝r1

C

nat

C

nat

Here, ⇝r is a HyperLMNtal reduction using the

rule r, where the formal semantics is described in

[26] [25]. In [26], we have shown that the function

has a type that takes two difference lists and re-

turns a difference list.

λGT can not only handle graphs as input/out-

put of functions, but also able to pattern match

graphs. This is more powerful than those of tra-

ditional functional languages with Algebraic Data

Types. With Algebraic Data Types, normally, only

the root of a tree can be matched. Taking the last

element of a list needs iterating from the head of

the list. On the other hand, in λGT , we can pop

the last element in one step.

case x of

y C

z

→ Some ( y , z )

| otherwise → None

Here, we used an option type (Some and None)

and a tuple to return both the popped list and

the element. λGT we will describe in the next sec-

tion does not have option type and tuple explicitly.

However, they can be easily introduced directly to

the language or encoded without extension.

For example, Some x can be encoded as Some

x

and ( y
,

z ) as
,

y z

.

If we have bound (1) to x , then the ob-

tained result will be

( C C

1 2 , 3

)
.

The values in λGT are undirected graphs. How-

ever, it will be suitable for the links in the graphs

to be directed when compiling to an impure func-

tional language program using reference types. In

λGT , we can easily encode directed edges. The links

in the difference lists we have introduced can be re-

garded as directed edges from left to right or from

up to down.

C C C

1 2 3

(1− b)



nodes −→
r1

Nil

nodes −→
r2

C1 nodes

nodes −→
r3

C2 nodes

Fig. 2 Production rules for 2-level skip list

However, if the list consists only of forward point-

ers, it will be difficult to match backward efficiently

such as matching to the last node of the list. There-

fore, we consider making it a doubly linked list as

the following. We can easily rewrite the program

to handle this.

C C C

1 2 3

λGT can handle not only difference lists but also

various data structures. Skip list is a list with extra

edges, as shown in Figure 4. The extra edges can

be used to make searching more efficient. In λGT ,

the skip list of level 2 can be expressed as shown in

Figure 5, using the production rules in Figure 2.

Suppose we want to represent a skip list of arbi-

trary level. A skip list using a list of links to the

nodes to be skipped can be represented as in Fig-

ure 6. Figure 3 shows the production rules for such

lists. The rules exploit difference lists to link to a

skipped node after Forking. The list of skipping

links is terminated with the neXt atom.

For operations that cannot be performed by sim-

ply decomposing and composing graphs, we can

prepare atoms to behave as markers and use them

for matching. For example, a map function that

applies a function to the element of the leaves in a

leaf-linked tree can be expressed as Table 7.

Here, if
+1

is a function that returns the suc-

cessor of a given number, and we have bound

nodes −→
r1

nodes −→
r2

C forks

nat

forks −→
r3

F

forks nodes

forks −→
r4

X nodes

Fig. 3 Production rules for an arbitrary-level

skip list
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, then eval-

uating the program will result in

N

N

N

N

L

L L

L L

2

3 4

5 6

.

3 The syntax and semantics of λGT

Throughout the paper, we use the following syn-

tactic conventions.

For some syntactic entity E,
−→
E stands for a se-

quence E1, . . . , En for some n (≥ 0). The length of

the sequence
−→
E is denoted as |

−→
E |.

For some syntactic entities E, p and q, a substi-

tution E[q/p] stands for E with all the (free) oc-

currences of p replaced by q. An explicit definition



head 1 2 3 4 5

Fig. 4 2-level skip list with heaps and pointers

C2
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C1

2

C2

3

C1

4

C2

5

Nil

Fig. 5 2-level skip list in λGT
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2

X C
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F

X C

4

X C

5

X

Fig. 6 n-level skip list (n = 3)

will be given if the substitution should be capture-

avoiding. For substitutions of hyperlinks, we use a

slightly different syntax E〈q/p〉 for clarity.

3. 1 Syntax of λGT

The λGT language is composed of the following

syntactic categories.

• X denotes a Link Name.

• C denotes a Constructor Name.

– Cons, Fork, etc.

• x denotes a Graph Context Name.

λGT is designed to be a small language focusing

on handling graphs. The syntax of λGT is given in

Figure 8.

Graph Template. 0 denotes an empty graph. A

graph context x[
−→
X ], where

−→
X is a sequence of dif-

ferent links, is a wildcard in pattern matching cor-

responding to a variable in functional languages. It

matches any graph with free links
−→
X . v (

−→
X ) is an

atom. Intuitively, it is a node of a data structure

with label v and links
−→
X . (T, T ) is a multiset union.

νX.T hides the link X. We call a link free link, if

it is not hidden. The set of the free links in T is

denoted as fn(T ). The links that do not occur free

are called local links.

Atom name. C(
−→
X ) is a constructor atom. For

example, Nil(X), Cons(Y, Z,X), etc. The λ-

abstraction atoms have the form (λx[
−→
X ].e)(

−→
Y ).

Intuitively, the atom takes a graph with free links
−→
X , binds it to the graph context x[

−→
X ], and returns

the value obtained by evaluating the expression e

with the bound graph context. An atom X ▷◁ Y ,

called a fusion, fuses the link X and the link Y into

a single link.

Expression. T is a graph template we have de-

fined so far. Notice that the corresponding con-

cepts of variables and λ-expressions have already

incorporated as graph contexts and λ-abstraction

atoms in a graph template. (case e1 of T →
e2 | otherwise → e3) evaluates e1, checks whether

this matches the graph template T , and reduces to

e2 or e3. (e1 e2) is an application.

Value. G stands for a value of the language λGT ,

which is T not containing graph contexts. Hence-

forth, we may call both G and T a graph when the

distinction is not important.

Although we omitted in the figures in the pre-

vious section, graphs have free links and the links

(edges) atoms (nodes) are ordered. This is different

from ordinary graphs in graph theory. We believe

that the graph in λGT is a structure that naturally

incorporates PL concepts and is easy to handle in



let map f x =

let rec helper
x′ =

case
x′ of

y

L

m z

→

let z′ = f z in

helper
y

L

z′ m

| y

m

→ y

in

helper x

m

in

map +1 t

Fig. 7 A map function for leaf linked trees

programming. Also, the graph is composed of sub-

graphs, in which we can naturally use structural

induction, which is advantageous in verification.

The graphs in λGT is undirected. However, since

the edges of an atom are ordered, we can easily en-

code directed graphs by stipulating that the final

argument of atoms is the head of the links. All the

examples in this paper can be interpreted as such.

3. 2 Structural Congruence

Structural congruence ≡ defines what graphs T

or G are essentially the same.

Definition 3.1 (Structural Congruence). We de-

fine the relation ≡ on graphs as the minimal equiva-

lence relation satisfying the rules shown in Figure 9.

Here, G〈Y/X〉 is a hyperlink substitution that re-

places all free occurrences of X with Y . Notice if a

free occurrence of X occurs in a location where Y

would not be free, α-conversion may be required.

Two graphs related by ≡ are essentially the same

and are convertible to each other in zero steps.

(E1), (E2) and (E3) are the characterization of



Expression e ::= T Graph

| case e of T → e | otherwise → e Case

| (e e) Application

Graph Template T ::= 0 Null

| x[
−→
X ] Graph context

| v (
−→
X ) Atom

| (T, T ) Molecule

| νX.T Hyperlink creation

Atom Name v ::= C Constructor name

| ▷◁ Fusion

| λx[
−→
X ].e Abstraction

Value G ::= 0 | v (
−→
X ) | (G,G) | νX.G Graph

Fig. 8 Syntax of λGT

molecules as multisets. (E4) and (E5) are struc-

tural rules that make ≡ a congruence. (E6) and

(E7) are concerned with fusions. (E7) says that

a closed fusion is equivalent to 0. (E6) is an ab-

sorption law of ▷◁, which says that a fusion can

be absorbed by connecting hyperlinks. Because of

the symmetry of ▷◁, (E6) says that an atom can

emit a fusion as well. (E8), (E9) and (E10) are

concerned with hyperlink creations. We give two

important theorems showing that the symmetry of

▷◁ and α-conversion can be derived from the rules

of Figure 9.

Theorem 3.1 (Symmetry of ▷◁).

X ▷◁ Y ≡ Y ▷◁ X

Proof. See Chapter 3 of [24].

Thus, (E6) can be used also when we have a local

link on the right-hand side of ▷◁.

Theorem 3.2 (α-conversion of hyperlinks).

Bound link names are α-convertible, i.e.,

νX.G ≡ νY.G〈Y/X〉 where Y /∈ fn(G)

Proof. See Chapter 3 of [24].

Using structural congruence (syntax-directed ap-

proach) instead of graph isomorphism or bisimu-

lation is not a common approach in graph trans-

formation formalisms. However, we believe using

syntax-directed approach makes the semantics a lot

easier than adopting the other approaches, since

(E1) (0, G) ≡ G

(E2) (G1, G2) ≡ (G2, G1)

(E3) (G1, (G2, G3)) ≡ ((G1, G2), G3)

(E4) G1 ≡ G2 ⇒ (G1, G3) ≡ (G2, G3)

(E5) G1 ≡ G2 ⇒ νX.G1 ≡ νX.G2

(E6) νX.(X ▷◁ Y,G) ≡ νX.G〈Y/X〉
where X ∈ fn(G) ∨ Y ∈ fn(G)

(E7) νX.νY.X ▷◁ Y ≡ 0

(E8) νX.0 ≡ 0

(E9) νX.νY.G ≡ νY.νX.G

(E10) νX.(G1, G2) ≡ (νX.G1, G2)

where X /∈ fn(G2)

Fig. 9 Structural congruence on graphs

the λ-calculus and many other computational mod-

els derived from the λ-calculus are are defined as

Structural Operational Semantics [19].

The pair of the name p and the arity n = |
−→
X | of

a graph context x[
−→
X ] is referred to as the functor†2

of the context and is written as x/n.

Definition 3.2 (Free functors of an expression).

We define free functors of an expression e, ff (e),

in Figure 10. Free functors are not to be confused

with free link names.

†2 Synonym of function symbol and function object;

not to be confused with functors in category the-

ory.



ff (case e1 of T → e2 | otherwise → e3) =

ff (e1) ∪ (ff (e2) \ ff (T )) ∪ ff (e3)

ff ((e1 e2)) = ff (e1) ∪ ff (e2)

ff (x[
−→
X ]) = {x/|

−→
X |}

ff (v(
−→
X )) = ∅

ff ((λx[
−→
X ].e)(

−→
Y )) = ff (e) \ {x/|

−→
X |}

ff ((T1, T2)) = ff (T1) ∪ ff (T2)

ff (νX.T ) = ff (T )

Fig. 10 Free functors of an expression

3. 3 Operational semantics of λGT

3. 3. 1 Graph Substitution

We define graph substitution, which replaces a

graph context whose functor occurs free by a given

subgraph. The substitution avoids clashes with any

bound functors by implicit α-conversion (capture-

avoiding substitution). Graph substitution is not

to be confused with hyperlink substitution. Intu-

itively, hyperlink substitution just reconnects hy-

perlinks. On the other hand, graph substitu-

tion performs deep copying at the semantics level

(though it could or should be implemented with

sharing whenever possible).

We define capture-avoiding substitution θ of a

graph context x[
−→
X ] with a template T in e, written

e[T/x[
−→
X ]], as in Figure 11. The definition is stan-

dard except that it handles the substitution of the

free links of graph contexts in the third rule.

3. 3. 2 Matching

We say that T matches a graph G if there exists a

graph substitution θ such that G ≡ Tθ. For exam-

ple, Figure 12 shows the matching of a difference

list.

Note that the matching of λGT is not subgraph

matching (as is standard in graph rewriting sys-

tems) but the matching with the entire graph G

(as is standard in pattern matching of functional

languages). For this reason, the free link names

appearing in a template T must exactly match the

free links in the graph G to be matched. This is to

be contrasted with free links of HyperLMNtal rules

that are effectively α-convertible since the rules can

match subgraphs by supplementing fusion atoms (

[25]).

(T1, T2)θ = (T1θ, T2θ)

(νX.T )θ = νX.Tθ

(x[
−→
X ])[T/y[

−→
Y ]] =

if x/|
−→
X | = y/|

−→
Y | then T 〈X1/Y1〉 . . . 〈X|

−→
X |/Y|

−→
Y |〉

else x[
−→
X ]

(v(
−→
X ))θ = v(

−→
X )

((λx[
−→
X ].e)(

−→
Z ))[T/y[

−→
Y ]] =

if x/|
−→
X | = y/|

−→
Y | then (λx[

−→
X ].e)(

−→
Z )

else if x/|
−→
X | /∈ ff (e) then (λx[

−→
X ].e[T/y[

−→
Y ]])(

−→
Z )

else (λ z[
−→
X ].e[z[

−→
X ]/x[

−→
X ]][T/y[

−→
Y ]])(

−→
Z )

where z/|
−→
X | /∈ ff (e).

(case e1 of T → e2 | otherwise → e3)θ =

case e1θ of T → e2θ | otherwise → e3θ

(T1 T2)θ = (T1θ T2θ)

Fig. 11 Graph Substitution

3. 3. 3 Reduction

The evaluation strategy of λGT is call-by-value.

In order to define the small-step reduction rela-

tion, we extend the syntax with evaluation contexts

defined as follows: E ::= [] | (case E of T →
e | otherwise → e) | (E e) | (G E) | T . As usual,

E[e] stands for E whose hole is filled with e.

We define the reduction relation in Figure 13.

Rd-Case1 and Rd-Case2 are for matching graphs

we have explained so far. Rd-β is the key relation

that applies a value to a function. The definition is

standard except that (i) we need to check the cor-

respondence of free links and (ii) we use graph sub-

stitution but the normal substitution in λ-calculus.

The Rd-App1, Rd-App2, and Rd-Ctx are the same

as in the call-by-value λ-calculus..

4 Programs examples in detail

This section describes some of the programs we

have introduced informally in Section 2 in detail

with the formal semantics in order to discuss the

implementation algorithm in later sections.

We introduce some abbreviations before moving

on to the examples.

Definition 4.1 (Abbreviations). We introduce the

following abbreviation schemes:

1. A nullary atom v () can be simply written as

v.

2. Term Notation:

νXn.(v1(. . . , Xn, . . . ), v2(X1, . . . , Xn)) can be



X C C Y

1 2

G

νZ.(

νZ1.(Cons(Z1, Z,X), 1(Z1)),

νZ2.(Cons(Z2, Y, Z), 2(Z2))

)

≡

X x C Y

2

T

νZ.(

x[Z,X],

νZ2.(Cons(Z2, Y, Z), 2(Z2))

)

[
Z C W

1

/
Z x W

]

θ

[
νZ1.(Cons(Z1, Z,W ), 1(Z1))

/
x[Z,W ]

]

Fig. 12 Example of the graph matching

G ≡ Tθ
Rd-Case1

(case G of T → e2 | otherwise → e3) −→val e2θ
Matching succeeded

¬∃θ.G ≡ Tθ
Rd-Case2

(case G of T → e2 | otherwise → e3) −→val e3
Matching failed

fn(G) = {
−→
X}

Rd-β
((λx[

−→
X ].e)(

−→
Y )G) −→val e[G/x[

−→
X ]]

Beta reduction

e1 −→val e
′
1 Rd-App1

(e1 e2) −→val (e
′
1 e2)

e −→val e
′

Rd-App2
(G e) −→val (G e′)

e −→val e
′

Rd-Ctx
E[e] −→val E[e′]

Fig. 13 Reduction relation of λGT

written as v1(. . . , v2(X1, . . . , Xn−1), . . . ). For

example, a difference list with two elements,
νZ.(

νZ1.(Cons(Z1, Z,X), 1(Z1)),

νZ2.(Cons(Z2, Y, Z), 2(Z2))

)

,

can be abbreviated as Cons(1,Cons(2, Y ), X).

3. We abbreviate νX1. . . . νXn.G to νX1 . . . Xn.G.

4. Application is left-associative.

5. Parentheses can be omitted if there is no am-

biguity.

6. let x[
−→
X ] = e2 in e1 reduces in one step to

e1[e2/x[
−→
X ]].

Here, (1) and (2) also apply to graph contexts.

For the sake of explanation, the graph of evalu-

ation results may be rewritten using the structural

congruence rules.

let append [Z] =

(λ x[Y,X].

(λ y[Y,X].

νZ.(x[Z,X], y[Y, Z])

)(Z))(Z)

in append [Z] Cons(1, Y,X) Cons(2, Y,X)

Fig. 14 Append operation on difference lists

Graphs as inputs and output of a function

For example, we can describe a program to ap-

pend two singleton difference lists as in Figure 14.

We show the whole process of reduction of this

program in Figure 15, whose process is already

shown graphically in Section 2.

Firstly, the λ-abstraction atom is bound to

the graph context append [Z]†3. The bound λ-

†3 It may appear that the Z of append [Z] does not



abstraction atom is a function that takes two dif-

ference lists, both having X and Y as free links,

and returns their concatenation also having X and

Y as its free links.

Pattern matching graphs

Figure 16 shows the program, a slightly simpli-

fied version of the program introduced in Section 2,

that matches the difference list and removes the

last node. If Cons(1,Cons(2, Y ), X) is bound to

x[Y,X], this will result in Cons(1, Y,X).

Without the term-notation abbreviation, the

graph template used in the matching can be written

as νW.(y[W,X],Cons(Z, Y,W ), z[Z]). The match-

ing in this template proceeds as the following,

which is mostly the same as we have explained in

Figure 12 in the previous section.

Cons(1,Cons(2, Y ), X)

≡ νWZ.(y[W,X],Cons(Z, Y,W ), z[Z])

[Cons(1,W,X)/y[W,X], 2(Z)/z[Z]]

In order to implement the language precisely, we

also need to consider the corner case; for example,

the matching which exploits fusion.

Consider if a singleton list νZ.(Cons(Z, Y,X), 1(Z))

is bound to x[Y,X]. We need a sub-graph that has

free links W and X, the free links of the graph

context y[W,X] in the graph template, which does

not exist in the list. Thus the matching would not

proceed without supplying sub-graphs.

This time, we need to firstly supply a fusion atom.

Then we can match y[W,X] to the supplied fusion

atom. The matching proceeds as follows.

Cons(1, Y,X)

≡ νWZ.(W ▷◁ X,Cons(Z, Y,X), 1(Z))

= νWZ.(y[W,X],Cons(Z, Y,W ), z[Z])

[W ▷◁ X/y[W,X], 1(Z)/z[Z]]
Therefore, the program will result in Y ▷◁ X.

Even if a bound fusion atom is used, it may be

play any role in this example. However, such

a link becomes necessary when the append is

made to appear in a data structure (e.g., as in

νZ.(Cons(Z, Y,X), append [Z])). This is why λ-

abstraction atoms are allowed to have argument

links. Once such a function is accessed and β-

reduction starts, the role of Z ends, while the free

links inside the abstraction atom start to play key

roles.

absorbed and does not appear explicitly in the re-

turn value. Consider the program in Figure 17 that

cycles the elements by taking the last node of the

difference list and reconnecting it to the head. Fu-

sion can be absorbed in the return value in this

program.

If Cons(1, Y,X) is bound to x[Y,X], this will

result in Cons(1, Y,X). The pattern match-

ing proceeds in the same way as in the previ-

ous program. Thus we will obtain the substi-

tution [W ▷◁ X/y[W,X], 1(Z)/z[Z]]. Substituting

the graph template on the right-hand side of → will

result in Cons(1, Y,X) as follows.

νWZ.(Cons(Z,W,X), z[Z], y[Y,W ])

[W ▷◁ X/y[W,X], 1(Z)/z[Z]]

= νWZ.(W ▷◁ X,Cons(Z, Y,X), 1(Z))

≡ Cons(1, Y,X)
The program using the map function for leaf-linked

trees in Figure 7 in Section 2 also uses the matching

with supplying fusions.

Such fusion-complementary matching does not

appear in ordinary ADT matching in functional

languages. Also, formalization using fusions is not

common in ordinary graph transformations, as well

as the tools based on them. Thus, it is a challenge

to deal with it.

5 Reference interpreter: Uses and Re-

quirements

We implement a reference interpreter, a reference

implementation of the language, which has several

potential uses as follows.

For research of the design of real languages. λGT

is a computational model with a new concept.

While the operational semantics are defined, this

only defines the behavior as a computational model,

and does not define how we can implement data

structures and perform efficient pattern matching.

It is ultimately up to the language designer to de-

cide how to implement this.

If general hypergraphs are handled purely and

no restrictions are placed on pattern matching to

them, an efficient implementation will be difficult.

Therefore, in designing a real language, it is re-

alistic to put in appropriate restrictions while us-

ing the type system as support. However, these

constraints should not exclude practicality. Actual

programming using the reference interpreter is use-

ful to determine whether or not it is practical to



let append [Z] = (λx[Y,X]. (λ y[Y,X]. x[y[Y ], X])(Z))(Z)

in append [Z] Cons(1, Y,X) Cons(2, Y,X)

−→val (λx[Y,X]. (λ y[Y,X]. x[y[Y ], X])(Z))(Z) Cons(1, Y,X) Cons(2, Y,X)

−→val (λ y[Y,X]. x[y[Y ], X])(Z)[Cons(1, Y,X)/x[Y,X]] Cons(2, Y,X)

= (λ y[Y,X].Cons(1, y[Y ], X))(Z) Cons(2, Y,X)

−→val (Cons(1, y[Y ], X))(X)[Cons(2, Y,X)/y[Y,X]]

= Cons(1,Cons(2, Y ), X)

Fig. 15 An example of reduction: append operation on difference lists

let pop[Z] =

(λx[Y,X].

case x[Y,X] of

y[Cons(z, Y ), X] → y[Y,X]

| otherwise → x[Y,X]

)(Z)

in pop[Z] x[Y,X]

Fig. 16 Pop operation on a difference list

let rotate[Z] =

(λx[Y,X].

case x[Y,X] of

y[Cons(z, Y ), X] → Cons(z, y[Y ], X)

| otherwise → x[Y,X]

)(Z)

in rotate[Z] x[Y,X]

Fig. 17 Rotate operation on a difference list

include constraints.

For testing future implementations. We intend

to build a more efficient implementation in the fu-

ture. However, since we are dealing with complex

data structures, we need to do low-level program-

ming making full use of pointers at the meta-level,

which is not easy. Therefore, it is assumed that

development will proceed with testing. To test the

results, it is useful to have an implementation that

outputs the correct results, even if the execution

efficiency is poor.

To develop applications using λGT . It is better

to have a runtime to find and test programs that

can be written concisely using λGT .

To develop tools. This study pioneers a method

for representing graphs in terms of terms, and gives

a semantics based on them. This is advantageous in

terms of semantics and verification. However, it is

not clear whether it is easy for users to write. If we

are dealing with graphs, it is considered more intu-

itive to be able to draw them graphically. There-

fore, the editor of λGT may be GUI-based. It would

be advantageous to be able to actually run the tool

when developing tools．

6 Implementation

6. 1 Overview

The goal of this study is to implement as simple

as possible, without regard to efficiency. Our imple-

mentation consists of only 500 lines of OCaml code

as shown in Table 1. This is about half of the lines

of a reference interpreter of a graph transformation-

based language GP 2 [1], which is about 1,000 lines

of Haskell code [2]. This is striking considering that

our language does not only support graph trans-

formation but we have incorporated it into a func-

tional language without sacrificing functional lan-

guage features such as higher-order functions.

The interpreter is composed of pure functions

without destructive operations. We use lists to han-

dle graphs.

6. 2 Parser

Our current implementation is not intended to

provide a complete language that can be used in

real-world programming. The final design of the

concrete syntax is left to the designer of the actual

language. There is even a possibility of providing

a graphical UI and not allowing the language to be

written in texts. In this study, we gave a concrete

syntax that is easy to parse. The syntax is not so-

phisticated enough for programmers to write easily.

However, this still satisfies our purpose.



Table 1 LOC of the interpreter

File LOC

eval/match ctxs.ml 79

parser/parser.mly 70

parser/lexer.mll 51

eval/syntax.ml 47

eval/eval.ml 43

eval/pushout.ml 42

eval/match atoms.ml 36

eval/preprocess.ml 36

parser/syntax.ml 16

eval/match.ml 11

parser/parse.ml 4

bin/main.ml 3

SUM 438

Concrete syntax

• Link name starts from a capital letter with an

underscore as a prefix.

• ν is written as nu.

• λ-abstraction atom (λx[
−→
X ].e)(

−→
Y ) is written

with < and > as follows.

<\ x[_X1, ..., _Xn]. e> (_Y1, ..., _Ym).

• The graph templates appears in expressions

should be surrounded with { and }.

6. 3 Preprocessing graphs

In our implementation, values, i.e., graphs, are

represented with lists of atoms without link cre-

ations inside; i.e., prenex normal form. We call

them host graphs. Links are classified into free links

with string names and local links α-converted to

fresh integer ids. In this paper, we denote Li for

the local link with the id i and FX for the free link

with the name X.

Fusion atoms with local link(s) are absorbed be-

forehand. Currently, we assign numbers starting

from 1,000 to the local links in the template to

avoid conflict with the host graphs whose local links

are assigned numbers starting from 0†4.
The interpreter transforms graph templates to

a pair of the list of the atoms and the list of the

graph contexts. For example, the graph template

y[Cons(z, Y ), X], the pattern in the Figure 16, is

†4 This may be too ad-hoc solution but is simple and

does work in our examples.

transformed into the following.
〈 [Cons(L1001, FY , L1000)] ,

[y [L1000, FX ] , z [L1001]] 〉
(1)

Whereas the host graph Cons(1, Y,X) is trans-

formed into the following.

[Cons(L0, FY , FX), 1(L0)] (2)

This preprocessing occurs every time evaluating

the expression. This can be easily optimized to be

memorized. However we focused more on the sim-

plicity of the implementation.

6. 4 Matching graphs

The interpreter firstly tries to match all the

atoms in the template to the host graph and then

match the graph contexts to the rest of the host

graph. The interpreter backtracks if the consequent

matching failes.

6. 4. 1 Matching atoms

We take an atom from the head of the list of

atoms in the graph template and try to find the

corresponding atom from the host graph. If the

matching succeeds, the atom in the host graph is

removed.

To match an atom, we need to check that they

have the same name and the correspondence of

links. Since the local link names are α-convertible,

it is not sufficient only to check that they have the

same link names. Therefore, we exploit a link en-

vironment, a mapping from the local link names in

the template to the link names in the host graph.

Using structural congruence rules such as (E6),

we can fuse local link names. Therefore, it seems

that different link names can be mapped to the

same link name, and vice-versa. However, since we

have absorbed all the fusion atoms that have local

links in the graph template, the former situation

is impossible. Thus the link environment is func-

tional, i.e., the same link names are mapped to the

same link name. Notice the latter is still possible

since we can supply fusion atoms to the host graph

in the matching.

The matching of link names using the link envi-

ronment proceeds as in Figure 18. Free links in the

template should match links with the same names

in the host graph (line 7–8). On the other hand, the

matching of local links in the template (line 10–14)

is more flexible, since we can α-convert them.

For example, the atom Cons(L1001, FY , L1000)

in the template (1) can be matched to the atom



Cons(L0, FY , FX) in the host graph (1) with link

environment

{L1000 7→ FX , L1001 7→ L0} (3)

and we have

[1(L0)] (4)

left in the host graph.

6. 4. 2 Supplying fusions

After all the atoms in the template have matched,

we substitute link names in the host graph with in-

verse of the obtained link environment. For exam-

ple, the rest host graph (4) becomes the following.

[1(L1001)] (5)

We supply fusion atoms to the host graph using

the link environment obtained in the matchings of

atoms. If the mapping is not injective, then we

should supply fusion atoms to the host graph. For

example, if we obtain the link environment

{L1000 7→ L0, L1001 7→ L0}
then we should supply L1000 ▷◁ L1001.

If a local link in the template is mapped to a

free link in the host graph, then we also need to

supply a fusion since a local link does not match

a free link without such treatment. For exam-

ple, in the link environment (3), we have a map-

ping {L1000 7→ FX}. Thus, we should supply

L1000 7→ FX and obtain

[1(L1001), L1000 ▷◁ FX ] (6)

as the rest sub-graph.

Since we have preprocessed the template to

have no fusion atoms with local links, this fusion-

supplying task can be performed after all the atoms

have matched. However, since graph contexts can

match with fusions, we need to perform the task be-

fore moving on to the matching of graph contexts.

6. 4. 3 Matching graph contexts

Limitation. We place the following two limi-

tations on the graph contexts to make the im-

plementation simple: (i) the graph that a graph

context can match is connected and (ii) the local

links of a graph context are connected to atom(s).

The matching that does not satisfy these two con-

straints can be highly non-deterministic, which we

believe is not practical and thus not the main scope

of our language.

The matching of a graph context x[
−→
X ] with sub-

graph G, initially Null, proceeds as follows.

1. Find all the atom(s) with link
−→
Y where {

−→
Y }∩

{
−→
X} 6= ∅. Add the atoms to G.

2. Update
−→
X with {

−→
Y } \ {

−→
X} and iterate from

1 let check link

2 σ (* Link environment *)

3 X (* Link in the template *)

4 Y (* Link in the host graph *)

5 =

6 match (X,Y ) with

7 (FX , FY ) →
8 if X = Y then Some σ else None

9 (FX , Li) → None

10 (Li, Y ) →
11 if Li 7→ Z ∈ σ then

12 if Y = Z then Some σ

13 else None

14 else Some (σ ∪ {Li 7→ Y })

Fig. 18 Link name matching

(1) again.

3. If we obtain no more newly added atom, then

check the free links of G is the same as the links

of the graph context x[
−→
X ].

For example, y[L1000, FX ] and z[L1001], the graph

contexts in (1), can match host graphs L1000 ▷◁ FX

and 1(L1001), the sub-graphs in (6), respectively.

After the matching, we obtain the following graph

substitution.
[ L1000 ▷◁ FX/y [L1000, FX ] ,

1(L1001)/z [L1001] ]
(7)

6. 5 Graph substitution

Graph substitution can be done by adding the

matched atom(s) G to the host graph, the list

of atoms. However, we need to take care of

link names. As we have defined in Figure 11 in

Section 3, we need to substitute the link names

of G with the link names of the graph con-

text in an evaluating template. Therefore, if we

have matched G with x[
−→
X ] and the template has

x[
−→
Y ], we need to update G with substitution

〈Y1/X1〉 . . . 〈Y|
−→
Y |/X|

−→
X |〉. We also need to reassign

ids for the local links since composing graphs may

result in a conflict of ids.

With the obtained graph substitution (7), we can

instantiate the template on the right-hand side of

→ in Figure 16, [y[FY , FX ]], which will result in

[FY ▷◁ FX ] (8)

Our implementation absorbs fusions as much as

possible after graph substitutions. The fusion atom

in (8) cannot be absorbed since both its links are



free links. On the other hand, the example in Fig-

ure 17 will result in
[ L1000 ▷◁ FX ,

Cons(L1001, FY , L1000),

1(L1001)

]
which will be normalized and reassigned ids to ob-

tain the following.

[Cons(L0, FY , FX), 1(L0)]

6. 6 The Evaluator

The evaluator is implemented just as these for

functional languages. It takes an environment, a

mapping from graph contexts to the matched sub-

graphs, and an expression to evaluate.

7 Related and Future work

7. 1 Related work

7. 1. 1 Functional languages with graphs

FUnCAL [17] is a functional language that sup-

ports graphs as a first-class data structure. This

language is based on an existing graph rewriting

language, UnCAL [4]. In UnCAL (and FUnCAL),

graphs may include back edges and their equality

is defined based on bisimulation. FUnCAL comes

with its type system but does not support pattern

matching for user-defined data types, which classic

functional languages support for ADTs.

Functional programming with structured graphs

[18] can express recursive graphs using recursive

functions, i.e., let rec statements. Since they em-

ploy ADTs as the basic structure, they can enjoy

type-based analysis based on the traditional type

system. On the other hand, we can do further de-

tailed type analysis by our language and type sys-

tem.

Initial algebra semantics for cyclic sharing tree

structures [12] discusses how to express graphs by

λ-expressions. However, there is a large gap be-

tween λ-expressions and pointer structures. On the

other hand, we defined a graph based on nodes and

hyperedges, which has a clear correspondence to

a pointer structure. This style is rather suitable

for future implementation. In addition, they do

not support user-defined graph types or verification

based on them.

7. 1. 2 Implementations for Graph Trans-

formation Systems

There are several languages based on graph

transformations. For example, AGG [22], GAMMA

[3], Structured Gamma [9], GP [16], GP 2 [1],

GROOVE [10], GrGen.NET [13], (Hyper) LMNtal

[29] [31] [25], PORGY [7], and PROGRES [27]. How-

ever, as far as we know, few published implemen-

tations have focused on simplicity.

HyperLMNtal, which is the language we have in-

corporated, has the compiler [15] and the runtime

SLIM [28] [11]. The compiler is written in Java in

around 12,000 lines and the runtime is written in

C++ in around 47,000 lines. SLIM is highly opti-

mized and enables non-deterministic execution and

model checking, which is out of the scope of our

language and implementation. Thus, we cannot

say our implementation surpasses it. Even so, the

contrast with the 500 lines of OCaml code for our

interpreter is conspicuous.

GP 2 has a reference interpreter [2]. This is writ-

ten in around 1,000 lines of Haskell sources with-

out sacrificing performance significantly. Though

we sacrificed performance, we have implemented

the language that exceeds graph transformation in

about half of the lines in OCaml.

7. 2 Future work

The implementation in this study is only a Proof

of Concept: execution efficiency is not considered.

To improve execution performance to the same level

as the corresponding imperative code, it is neces-

sary to develop static analysis. We are planning

to extend the type system to check the direction

(polarity) of links [30], and then perform ownership

checking [5]. Then, we develop a method to a tran-

spile to a lower-level code using reference types in

functional languages such as OCaml or an impera-

tive code with pointers.
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