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Proof Normalization for Classical Truth-Table

Natural Deduction

Kosuke Fukui Saori Ishii Koji Nakazawa Takeshi Tsukada

The truth-table natural deduction was introduced by Geuvers et al. as a framework to construct natural-

deduction-style logical systems for general logical connectives accompanied by truth tables that define the

semantics of the connectives. They introduced both an intuitionistic variant IPCC and a classical variant

CPCC of the truth-table natural deduction. They also gave a proof normalization for IPCC , by which some

fundamental properties such as consistency and decidability are proved for IPCC . However, for the classical

variant, any proof normalization with nice properties has not been achieved. This paper proposes a new

classical variant IPCµ
C of the truth-table natural deduction and a proof normalization on IPCµ

C . IPCµ
C is

based on Parigot’s classical natural deduction, and its proof normalization is obtained by generalizing the

lambda-mu calculus. This paper proves that IPCµ
C is equivalent to CPCC regarding provability and that the

proof normalization for IPCµ
C satisfies the strong normalization and the subformula property. As corollaries

of them, it also gives syntactic proofs of consistency and conservativeness for IPCµ
C .

1 Introduction

The truth-table natural deduction [1] [2] is a gen-

eral framework to define natural-deduction-style

logical systems for general logical connectives. In

it, we can deduce inference rules from truth tables

for logical connectives: an elimination rule from

each row with the truth value 0 (false), and an in-

troduction rule from each row with the truth value

1 (true). IPCC is an intuitionistic variant of the

truth-table natural deduction for the set C of log-

ical connectives and CPCC is its classical variant,

which are complete for the intuitionistic Kripke se-

mantics and classical semantics, respectively.

A suitable proof normalization enables us to con-

clude fundamental properties of logical systems

such as consistency, decidability, and conservative-

ness. Geuvers et al. [2] gave a proof normalization

for IPCC , and van der Giessen [9] [4] showed the

subformula property and the strong normalization

for it, which imply consistency and decidability of
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IPCC. Furthermore, we also obtain conservative-

ness of IPCC by the proof normalization, that is,

the extension of C does not affect the provability

for the connectives in C.
On the other hand, as stated in [9] [4], it is still

unclear how we can define proof normalization for

the classical variant CPCC with good properties.

They defined CPCC in the style of Parigot’s free de-

duction [7] rather than standard natural-deduction

style, and it is not easy to define the proof nor-

malization for CPCC . Geuvers et al. [3] proposed

a proof normalization for CPCC, but its properties

such as normalization property have not been stud-

ied yet.

In this paper, we propose another classical vari-

ant IPCµ
C of the truth-table natural deduction,

which extends IPCC by multiple conclusions in a

similar way to Parigot’s classical natural deduction

introduced [8]. For IPCµ
C , we can define a proof nor-

malization which is induced from Parigot’s lambda-

mu calculus [8], which have been widely studied

from the view point of both logic and computa-

tional calculus. We prove the following properties

for IPCµ
C : (1) Provability of IPCµ

C is the same as

that of CPCC . (2) Normal proofs in IPCµ
C satisfy

the subformula property, that is, every formula oc-



curring in a normal proof of a judgment is a sub-

formula of the judgment. (3) The reduction for the

proof normalization in IPCµ
C is strongly normaliz-

able, that is, there is no infinite reduction sequence.

As corollaries for these properties, we have the fun-

damental properties of IPCµ
C such as the consis-

tency and conservativeness. These properties can

be also proved semantically, and proof normaliza-

tion gives us syntactic proofs of them.

In order to prove strong normalization, we use

the continuation-passing-style (CPS) transforma-

tions. In the proof of strong normalization for IPCC

[9] [4], some continuations are removed during the

CPS transformation if the source term contains a

particular form of elimination rules, and then we

cannot prove the preservation of the strict reduc-

tion, that is, the one or more steps reduction. To

avoid this problem, van der Giessen splits the cases

depending on the form of elimination rules and in-

serts dummy redexes in the CPS transformation.

Moreover their CPS transformation collapses ev-

ery permutation step, and it is necessary to prove

the strong normalization of permutation conversion

separately.

However, such a naive case splitting does not

work for IPCµ
C , and we adopt the continuation-

and-garbage-passing-style (CGPS) transformation,

which was introduced by Ikeda et al. [5] to solve the

erasing continuation problem uniformly for several

calculi. In the CGPS transformation, every contin-

uation which occurs during the CPS transformation

is accumulated in the garbage parts, which play

the role of the dummy redexes. Moreover, permu-

tation steps and additional µ-reduction steps are

preserved as garbage-disposal steps, and hence it

is not necessary to prove strong normalization of

these reductions separately. The technique with

CGPS transformation also gives a simpler strong

normalization proof for IPCC because we need not

prove the strong normalization separately.

2 Truth-table natural deduction and

proof normalization

2. 1 IPCC and CPCC

In this section, we recall two variants of the truth-

table natural deduction. One is the intuitionistic

variant IPCC , and the other is the classical variant

CPCC [1]. Here, C is a set of logical connectives,

each of which has a fixed arity, and are supposed

to be accompanied with a truth table tc. We use

0 (false) and 1 (true) for the truth values, and B
for the set {0, 1}. The truth table tc for an n-ary

connective is given as a mapping from Bn to B.
Definition 2.1 (Formulas and judgments). The

formulas on C are defined as

A ::= p | c(A1, · · · , An),

where p is a propositional variable, and c is a con-

nective in C whose arity is n. For a set Γ of formulas

and a formula A, we call Γ ` A a judgment. For the

set Γ = {A1, . . . , Am}, we write A1, . . . , Am ` A for

Γ ` A. We write Γ1,Γ2 for the union of Γ1 and Γ2.

In particular, when Γ2 is a singleton {A}, we write

Γ1, A for the union. When Γ is empty, we write

` A for Γ ` A.

Definition 2.2 (Inference rules). The inference

rules of the truth-table natural deduction for an

n-ary connective c are in Fig. 1, where
#»

b is a

sequence b1, . . . , bn of truth values bi ∈ B, and
#»
A = A1, . . . , An is a sequence of formulas.

Definition 2.3 (IPCC and CPCC [1]). 1. IPCC

consists of ax and the inference rules elc(
#»

b ) for

c ∈ C and
#»

b such that tc(
#»

b ) = 0, and inc(
#»

b ) for

c ∈ C and
#»

b such that tc(
#»

b ) = 1.

2. CPCC consists of ax and the inference rules

elc(
#»

b ) for c ∈ C and
#»

b such that tc(
#»

b ) = 0, and

inCc(
#»

b ) for c ∈ C and
#»

b such that tc(
#»

b ) = 1.

Example 2.4. Consider xor with the truth table

defined as txor(1, 1) = txor(0, 0) = 0 and txor(1, 0) =

txor(0, 1) = 1. The inference rules of IPC{xor} are

ax and the the rules in Fig. 2, and CPC{xor} is ob-

tained by replacing the two introduction rules by the

rules in Fig. 3.

For general C, these natural deductions satisfy

the soundness and the completeness.

Theorem 2.5 ( [1] [9]). 1. IPCC is sound and com-

plete with respect to the intuitionistic Kripke se-

mantics, where the truth in each possible world is

defined by the given truth tables.

2. CPCC is sound and complete with respect

to the classical (two-valued) semantics, where the

truth is defined by the given truth tables.

2. 2 Proof normalization for IPCC

Next, we recall the proof normalization for IPCC

[2]. Following [2], we give the reduction system on

proof terms based on the Curry-Howard correspon-

dence, but we adopt a slightly different notation



1. Axiom:

Γ, A ` A
ax

2. Elimination rule: (D is an arbitrary formula.)

Γ ` c(
#»
A) · · ·

(for bi = 1)
Γ ` Ai · · ·

(for bj = 0)
Γ, Aj ` D · · ·

Γ ` D
elc(

#»

b )

3. Intuitionistic introduction rule:

· · ·
(for bi = 1)

Γ ` Ai · · ·
(for bj = 0)

Γ, Aj ` c(
#»
A) · · ·

Γ ` c(
#»
A)

inc(
#»

b )

4. Classical introduction rule: (D is an arbitrary formula.)

Γ, c(
#»
A) ` D · · ·

(for bi = 1)
Γ ` Ai · · ·

(for bj = 0)
Γ, Aj ` D · · ·

Γ ` D
inCc(

#»

b )

Fig. 1 Inference rules of truth-table natural deductions

Γ ` A1xorA2 Γ ` A1 Γ ` A2

Γ ` D
elxor(1, 1)

Γ ` A1 Γ, A2 ` A1xorA2

Γ ` A1xorA2
inxor(1, 0)

Γ, A1 ` A1xorA2 Γ ` A2

Γ ` A1xorA2
inxor(0, 1)

Γ ` A1xorA2 Γ, A1 ` D Γ, A2 ` D

Γ ` D
elxor(0, 0)

Fig. 2 Inference rules of IPC{xor}

Γ, A1xorA2 ` D Γ ` A1 Γ, A2 ` D

Γ ` D
inCxor(1, 0)

Γ, A1xorA2 ` D Γ, A1 ` D Γ ` A2

Γ ` D
inCxor(0, 1)

Fig. 3 Introduction rules of CPC{xor}

from [2], where they assign proof terms after sort-

ing the assumptions of each inference rules by the

value of bi, whereas we fix the order of the assump-

tions.

Definition 2.6 (Proof terms). The proof terms for

IPCC are defined as

M,N ::= x | M ·elc( #»
b ) [

#»
P ] | { #»

P }inc( #»
b )

P,Q ::= M | (x)M,

where x is a term variable and
#»
P is a sequence

P1, . . . , Pn. We often omit the annotation by names

of inference rules when they are not important or

obvious from contexts. We call expressions of the

form (x)M abstracted terms, and the occurrences

of x in M are supposed to be bound. As usual, we

identify terms which differ only in names of bound

variables. We write M · [ #»P ] · [ #»Q] for (M · [ #»P ]) · [ #»Q].

The term assignment rules for the proofs of IPCC

are in Fig. 4, where the judgment is extended to

the form Γ ` M : A and Γ is extended to the

set of pairs x : A of term variables and formulas.

We assume that Γ always satisfies the condition: if

x : A, x : B ∈ Γ, then A = B.

Definition 2.7 (Reduction rules for IPCC [2]). The

reduction rules on the proof terms of IPCC are in

Fig. 5. M [x := N ] on the right-hand side of each β-

rule is the ordinary capture-avoiding substitution.

Pi@[
#»
Q] on the right-hand side of the π-rule is de-

fined as N if Pi = N and (x)(N · [ #»Q]) if Pi = (x)N .

The relation M → N means that N is obtained

by replacing a subterm ofM by one of the reduction

rules. A subterm of M which matches the left-hand

side of one of the reduction rules is called a redex.

→+ and →∗ are the transitive closure and the re-

flexive transitive closure of →, respectively. When

we use only the β-rules, we write →β , →+
β , and

→∗
β . Similarly, we use →π, and so on. M is said

βπ-normal when there is no N such that M → N .

Note that, a proof term of the form { #»
P }inc( #»

b )·elc( #»

b′)

[
#»
Q] is always a β-redex. In fact, since tc(

#»

b ) = 1 and

tc(
#»

b′) = 0, we have bi 6= b′i for some i, and we can

apply one of the β-rules at the index i.

For the proof normalization of IPCC, the follow-

ing have been proved [9] [4]. In this existing work,

subject reduction is not explicitly shown, but it is

proved in a straightforward way.

Theorem 2.8 (Proof normalization of IPCC). In



Γ, x : A ` x : A
ax

Γ ` M : c(
#»
A) · · ·

(for bi = 1)
Γ ` Ni : Ai · · ·

(for bj = 0)
Γ, xj : Aj ` Nj : D · · ·

Γ ` M ·elc( #»
b ) [· · ·Ni · · · (xj)Nj · · · ] : D

elc(
#»

b )

· · ·
(for bi = 1)
Γ ` Ni : Ai · · ·

(for bj = 0)

Γ, xj : Aj ` Nj : c(
#»
A) · · ·

Γ ` {· · ·Ni · · · (xj)Nj · · · }inc( #»
b ) : c(

#»
A)

inc(
#»

b )

Fig. 4 Term assignment rules of IPCC

{· · ·Mi · · · }inc( #»
b ) ·elc( #»

b′)
[· · · (xi)Ni · · · ] 7→β Ni[xi := Mi] (for bi = 1 and b′i = 0)

{· · · (xi)Mi · · · }inc( #»
b ) ·elc( #»

b′)
[· · ·Ni · · · ] 7→β Mi[xi := Ni] ·elc( #»

b′)
[· · ·Ni · · · ] (for bi = 0 and b′i = 1)

(M · [P1, · · · , Pn]) · [
#»
Q] 7→π M · [P1@[

#»
Q], · · · , Pn@[

#»
Q]]

Fig. 5 Reduction rules of IPCC

IPCC, the following hold.

1. (Subject reduction) If Γ ` M : A is provable

and M → N holds, then Γ ` N : A is provable.

2. (Subformula property [9]) Every formula

which occurs in a βπ-normal proof of Γ ` M : A is

a subformula of either Γ or A.

3. (Strong normalization [9] [4]) If Γ ` M : A is

provable, there is no infinite βπ-reduction sequence

from M .

We will discuss van der Giessen’s proof of strong

normalization in Section 4.

As corollaries of these properties, we can prove

consistency and conservativeness of IPCC .

Corollary 2.9. 1. IPCC is consistent, that is,

there is a judgment which is not provable in IPCC.

2. Suppose C ⊆ C′ and that Γ and A contain only

formulas on C. Then, Γ ` A is provable in IPCC if

and only if it is provable in IPCC′ .

3 IPCµ
C : another classical truth-table

natural deduction

In this section, we give another variant IPCµ
C of

classical truth-table natural deduction based on the

classical natural deduction in [8]. We show that the

provability in IPCµ
C the same as that in CPCC and

we can define a proof normalization for IPCµ
C as an

extension of the lambda-mu calculus [8], which has

been well studied.

3. 1 Definition of IPCµ
C

Definition 3.1 (IPCµ
C). The judgments of IPCµ

C
are the expressions of the form Γ ` A;∆, where Γ

and ∆ are sets of formulas. The inference rules of

IPCµ
C are those of IPCC extended to the judgments

of IPCµ
C in a straightforward way, and the following

additional rules.
Γ ` A;B,∆

Γ ` B;A,∆
µ1

Γ ` A;A,∆

Γ ` A;∆
µ2

Theorem 3.2 (Soundness of IPCµ
C). If Γ ` A;∆ is

provable in IPCµ
C , then for any valuation of the clas-

sical (two-valued) semantics such that every for-

mula in Γ is true, there is a formula in {A} ∪ ∆

which is true in the valuation.

Proof. It is proved by induction on proofs.

Theorem 3.3 (Equivalence to CPCC). Γ ` A is

provable in CPCC if and only if Γ ` A; is provable

in IPCµ
C .

Proof. (From CPCC to IPCµ
C) We can show that

the classical introduction rules are admissible in

IPCµ
C . We use the fact that the cut rule and the

weakening rules are admissible in IPCµ
C .

(From IPCµ
C to CPCC) If Γ ` A; is provable in

IPCµ
C , it is valid in the classical semantics by the

soundness of IPCµ
C . By the completeness of CPCC ,

Γ ` A is provable in CPCC .

Corollary 3.4 (Completeness of IPCµ
C). IPCµ

C is

sound and complete with respect to the classical

(two-valued) semantics, where the truth is defined

by the given truth tables.



3. 2 Proof normalization of IPCµ
C

Definition 3.5 (Proof terms of IPCµ
C). The proof

terms of IPCµ
C are defined as follows.

M ::= x | M ·elc( #»
b ) [

#»
P ] | { #»

P }inc( #»
b ) | µα.βM

P ::= M | (x)M,

where α and β are µ-variables, which are different

sorts of variables from the term variables. Occur-

rences of α in µα.βM are supposed to be bound.

The term assignment rules of IPCµ
C are extended

from those of IPCC as follows. The judgments are

extended to the form Γ ` A;∆, where Γ is a set of

pairs x : A and ∆ is a set of pairs α : A. The rules

for the axiom, the elimination rules, and the intu-

itionistic introduction rules are analogous to IPCC .

The term assignment for µ1 and µ2 are the follow-

ing.
Γ ` M : A; β : B,∆

Γ ` µβ.αM : B; α : A,∆
µ1

Γ ` M : A; α : A,∆

Γ ` µα.αM : A; ∆
µ2

Definition 3.6 (Structural substitution). M [αX :=

αX · [ #»P ]] is defined as the proof term obtained

by recursively replacing each occurrence αN by

α(N · [ #»P ]).

Definition 3.7 (Reduction rules for IPCµ
C). The

reduction of IPCµ
C is defined by the β- and π-rules

of IPCC , and the following µ-rule.

(µα.βM) · [ #»P ] 7→µ µα.(βM)[αX := αX · [ #»P ]]

In IPCµ
C , M → N means that N is obtained by

replacing a subterm of M by one of the β-, π-, and

µ-rules.

We can show the following properties on the

proof normalization of IPCµ
C .

Theorem 3.8 (Proof normalization of IPCµ
C). In

IPCµ
C , the following hold.

1. (Subject reduction) If Γ ` M : A;∆ is provable

and M → N holds, then Γ ` N : A;∆ is provable.

2. (Subformula property) Every formula which

occurs in a βπµ-normal proof of Γ ` M : A;∆ is a

subformula of either Γ, A or ∆.

3. (Strong normalization) If Γ ` M : A;∆

is provable, there is no infinite βπµ-reduction se-

quence from M .

Proof. 1. It is proved in a standard way.

2. It is proved by induction on the normal proofs.

By the definition of the reduction rules, for every

elimination rule M · [ #»P ] in a βπµ-normal proof, M

must be a term variable.

3. This will be proved in Section 5.

Similarly to the case of IPCC, we have the follow-

ing corollaries.

Corollary 3.9. 1. IPCµ
C is consistent, that is,

there is a judgment which is not provable in IPCµ
C .

2. Suppose C ⊆ C′ and that Γ, A, and ∆ contain

only formulas on C. Then, Γ ` A;∆ is provable in

IPCµ
C if and only if it is provable in IPCµ

C′ .

Furthermore, these hold also for CPCC , which

are proved by the corollaries together with Theo-

rem 3.3.

4 Strong normalization of IPCC

In this section, we recall the proof in [9] [4] of the

strong normalization of IPCC .

4. 1 Simply typed parallel λ-calculus

First, we recall the extended typed λ-calculus

pλ→ [9], which is the target calculus of the CPS

transformations.

Definition 4.1 (pλ→). The types and the terms

of pλ→ are defined as follows.

A ::= a | A → A

M ::= x | (MM) | λx.M | (M1 || · · · || Mn),

where a is an atomic type and n ≥ 2. The terms of

the form (M1 || · · · || Mn) are called parallel terms.

The typing rules of pλ→ are the following.

Γ, x : A ` x : A

Γ, x : A ` M : B

Γ ` λx.M : A → B
Γ ` M : A → B Γ ` N : A

Γ ` MN : B
Γ ` M1 : A · · · Γ ` Mn : A

Γ ` (M1 || · · · || Mn) : A

Definition 4.2. The reduction rules of pλ→ are

the following

(λx.M)N 7→ M [x := N ]

(M1 || · · · || Mn)N 7→ (M1N || · · · || MnN)

M → N means that N is obtained by replacing a

subterm of M by one of the reduction rules. →+

and →∗ are the transitive closure and the reflexive

transitive closure, respectively.

The following relation M v N intuitively means

that N is obtained by adding some terms in parallel

terms in M .

Definition 4.3. The relation v on the terms of

pλ→ is inductively defined as follows.

• M v M .

• If N v Mi for some i, then N v (M1 || · · · ||
Mn).

• If Ni v Mi for all i, then (N1 || · · · || Nn) v
(M1 || · · · || Mn).

• If N v M , then λx.N v λx.M .



• If N1 v M1 and N2 v M2, then N1N2 v
M1M2.

The following lemma will play an important role

in the proofs of the strong normalization.

Lemma 4.4. If M v M ′ and M → N , then there

exists N ′ such that M ′ →+ N ′ and N v N ′.

The strong normalization of pλ→ has been

proved in [9].

Theorem 4.5 (Strong normalization of pλ→ [9]

[4]). There is no infinite reduction sequence from a

typable term in pλ→.

4. 2 CPS transformation of IPCC

The CPS transformation defined later preserves

the typability of terms through the following nega-

tive transformation.

Definition 4.6 (Negative transformation). Let o

be a fixed atomic type in pλ→. We use the abbre-

viation ¬o(A1, · · · , An) = A1 → · · · → An → o.

In particular, ¬oA denotes A → o. For b ∈ B, we
define ξbA by ξ1A = A and ξ0A = ¬oA. The nega-

tive translation A from the formulas of IPCC to the

types of pλ→ is as follows.

• p = ¬o¬op

• c(A1, · · · , An) = ¬o¬o(E #»
b 1 , · · · , E #»

b k ), where

(
#»

b 1, · · · , #»

b k) is the list of all sequences
#»

b such

that tc(
#»

b ) = 0, and for each
#»

b i = (bi1, · · · , bin),
E #»

b i is defined as ¬o(ξbi1
A1, · · · , ξbinAn).

A naive definition of the CPS transformation cor-

responding to the negative transformation is de-

fined as M = λk.(M : k), where the transformation

M : K is defined in Fig. 6.

This CPS transformation preserves typability,

but does not preserve strict reduction, since there

are two cases in which some redexes are erased dur-

ing the transformation: (1) When
#»
P in M · [ #»P ] : K

contains no abstracted term, K is erased. (2) For

{ #»
P }inc( #»

b ) : K, when there is no elimination rule

elc(
#»

b ′) such that bi 6= b′i, Pi is erased. Hence, the

redexes in the erased parts are also erased during

the transformation. The first case is discussed in

[6] [5] as the erasing-continuation problem.

To solve this problem, in [9] [4] they introduced a

case distinction depending on whether the erasing-

continuation problem arises or not, and inserted

some dummy redexes.

Definition 4.7 (CPS transformation for IPCC).

The CPS transformation for IPCC is defined as

M = λk.(M : k), where the transformation M : K

is defined as follows.

For this definition, they can show that if M →β

N and M v M ′ hold, then there is N ′ such that

N v N ′ and M ′ →+ N ′, and hence we can reduce

the strong normalization of β-reduction to that of

pλ→.

They need a further analysis for the π-reduction.

The π-reductions are divided into two cases: for a

π-redex M · [ #»P ] · [ #»Q], it is called positive if
#»
P con-

tains an abstracted term, and negative otherwise.

Then, we can show (1) if M →π N is positive, then

we have M = N , (2) negative π-reduction steps can

be postponed, and (3) The π-reduction is strongly

normalizing. By these facts, they proved the strong

normalization of the βπ-reduction in IPCC [9] [4].

5 Strong normalization of IPCµ
C

The strong normalization of IPCµ
C can be proved

by a CPS transformation in a similar way to the

case of IPCC . However, the naive case distinction

like Definition 4.7 does not work for IPCµ
C . Fol-

lowing the standard CPS transformation for the

λµ-calculus, we extend the definition of M : K

as µα.M : K = (M : λx.x)[kα := K] and

αM : K = M : kα, where we suppose a fixed

variable kα in pλ→ for each µ-variable α. In this

transformation, the erasing-continuation problem

arises in µα.M : K if M contains no free occur-

rence of α, and hence the case distinction should

be done depending on whether M contains free

α or not in µα.M : K. However, the reduction

µα.M → µα.M ′ may erase α in M , and then

µα.M : K and µα.M ′ : K are defined in the dif-

ferent cases. In fact, the transformation defined by

such a naive case distinction does not preserve the

reduction.

5. 1 CGPS transformation

In our proof, we adopt the continuation-and-

garbage-passing style (CGPS) transformation [5],

in which all continuations (the terms denoted by

K) are accumulated in the “garbage part” to keep

all of redexes in source terms. Furthermore, the

garbage part also plays a role measuring some

depth of nested elimination rules, and the π- and

the µ-reduction steps are also preserved strictly as

garbage-disposal steps.

Definition 5.1 (CGPS transformation for IPCµ
C).



x : K = xK

M ·elc( #»
b l) [· · ·Ni · · · (xj)Nj · · · ] : K = M : λg1 · · · gk.gl · · ·Ni · · · (λxj .(Nj : K)) · · ·

{· · ·Ni · · · (xj)Nj · · · }inc( #»
b ) : K = KLK

#»
b ,

#»
b 1 · · ·LK

#»
b ,

#»
b k ,

where (
#»

b 1, · · · , #»

b k) is the list of all sequences
#»

b such that tc(
#»

b ) = 0, and for each
#»

b l, LK
#»
b ,

#»
b l is the

parallel term which consists of the following terms.

λh1 · · ·hn.hiNi (for bi = 1 and bli = 0)

λh1 · · ·hn.(λxj .(Nj : K))hj (for bj = 0 and blj = 1)

Fig. 6 A naive definition of CPS transformation

x : K = xK

M ·elc( #»
b l) [· · ·Ni · · · (xj)Nj · · · ] : K = M : λg1 · · · gk.gl · · ·Ni · · · (λxj .(Nj : K)) · · ·

M ·elc( #»
b l) [· · ·Ni · · · ] : K = M : (λhg1 · · · gk.gl · · ·Ni · · · )K

([· · ·Ni · · · ] contains no abstracted term)

{· · ·Ni · · · (xj)Nj · · · }inc( #»
b ) : K = ((λq1 · · · qn.K) · · ·Ni · · ·λxj(Nj : K) · · · )LK

#»
b ,

#»
b 1 · · ·LK

#»
b ,

#»
b k ,

where LK
#»
b ,

#»
b i are defined as in Fig. 6.

Fig. 7 CPS transformation for IPCC

For terms M and N of pλ→, we write 〈〈M ;N〉〉
to denote (λx.M)N , where x is a variable which

does not occur in M . We also use the notation

〈〈M1;M2; · · · ;Mn〉〉 = 〈〈· · · 〈〈M1;M2〉〉 · · · ;Mn〉〉.
The CGPS transformation for IPCµ

C is defined as

M = λgk.(M : g, k), where the transformation

M : G,K is defined as Fig. 8

5. 2 Preservation of typability

The CGPS transformation preserves typability

of terms through the negative transformation ex-

tended with the type > of garbage.

Definition 5.2 (Negative transformation). Let >
be the type o → o. The negative transforma-

tion is defined as A = > → ¬oA
• for an IPCµ

C
formula A, where A• is defined as p• = ¬op

and c(A1, · · · , An)
• = ¬o(E #»

b 1 , · · · , E #»
b k ), where

(
#»

b 1, · · · , #»

b k) is the list of all sequences
#»

b such that

tc(
#»

b ) = 0, and for each
#»

b i = (bi1, · · · , bin), we de-

fine E #»
b i = ¬o(ξbi1

A1, · · · , ξbinAn).

Proposition 5.3 (Preservation of typability). If

Γ ` M : A;∆ is provable in IPCµ
C , then Γ,∆•,∆⊤ `

M : A is provable in pλ→.

Proof. It is proved by induction on the proofs in

IPCµ
C simultaneously with the following statement:

For any terms K and G of pλ→, if Γ ` M : A;∆,

Γ,∆•,∆⊤ ` G : >, and Γ,∆•,∆⊤ ` K : A•, then

we have Γ,∆•,∆⊤ ` (M : G,K) : o.

5. 3 Preservation of strict reduction

The last part of the strong normalization proof is

to prove that the CGPS transformation preserves

the strict reduction. To prove this, we need the

following lemmas.

Lemma 5.4. 1. If G → G′ holds, then we have

M : G,K →+ M : G′,K.

2. If K → K′ holds, then we have M : G,K →∗

M : G,K′.

3. If G v G′ and K v K′ hold, then we have

M : G,K v M : G′,K′.

Proof. These are proved by induction on M .

Proposition 5.5. If M →βπµ M ′ and M v N

hold, then there exists N ′ such that M ′ v N ′ and

N →+ N ′.

By this proposition, the strong normalization of

IPCµ
C is reduced to that of pλ→ as Fig. 9
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