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Polymorphic Gradual Typing with Holes

Jaebyeog Kim Eijiro Sumii

In a live programming environment, we often work with incomplete programs that are syntactically ill-

formed or have type errors [Omar+ 2017, 2019]. Since most languages do not provide semantics to such

incomplete programs, they do not give an idea of how other “well written” parts of the programs work. To

provide programmers continuous feedback about programs’ typing and dynamic behavior, Omar et al. [2019]

defined Hazelnut Live, a calculus that gives static and dynamic semantics to incomplete programs. They

used holes L M to represent missing parts of programs.

We extend this idea to polymorphic languages. Since typing of incomplete programs resembles gradual

typing [Siek and Taha 2006], we adopt recent research [New+ 2020] on polymorphic gradual typing, extend

its syntax with hole expressions, and do not stop a whole program by cast errors (which gradual typing

does, while Hazelnut Live does not).

Extending polymorphic terms with holes calls for two major considerations. First, we address unspecified

formal type parameters by assigning a fresh type variable X′ for its type ∀X′.A, while introducing the term

syntax ΛLM.M as it is, so as not to reduce incomplete programs like (ΛLM.M)[B]. Second, we treat programs

M containing unbound (term or type) variables by putting them inside holes LMM and giving them different

type environments.

With these ideas, we define a polymorphic calculus that gives static and dynamic semantics to incomplete

programs.

1 Introduction

As discussed by Omar et al. [7], when we are in

the middle of writing programs, we can not always

have a complete program. Sometimes we need to

write more code to make it syntactically right, or

purposefully omit details to have a bigger structure

first. Or maybe we just write something wrong like

2+ true. While we are amidst such editing, we still

want to know behavior of our program even if it is

partial and incomplete.

Most of the time, it is just the case that the com-

piler lets us know only which part of the program

is wrong, or the runtime aborts as soon as it de-
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tects a dynamic error. This is because most pro-

gramming languages do not assign meanings to in-

complete programs. To attack this problem, Omar

et al. [8] proposed a calculus, named Hazelnut, for

functional programs where every editor state—even

if intermediate—has some static meaning. They

formalized users’ edit actions as well as programs

with holes that represent incomplete parts, and de-

fined static semantics to the programs with holes.

Later, Omar et al. [7] also developed a calcu-

lus named Hazelnut Live. This calculus defines

dynamic semantics for incomplete programs with

holes, where evaluation continues arounds holes in-

stead of stopping. It is closely related to gradual

typing [11] for typing and evaluation of programs

with type holes, where explicit casts are inserted

before evaluation. Unlike gradual typing, however,



the evaluation does not stop even if a cast error oc-

curs, and continues to other parts of the program.

We aim to extend this idea to other desirable

features of programming languages, in particular

parametric polymorphism. Since Hazelnut Live’s

semantics for handling types are based on gradual

typing, we find a calculus that supports polymor-

phic gradual typing, and then extend it with static

and dynamic semantics for hole expressions.

1. 1 Polymorphic Gradual Typing with

PolyGν

Polymorphic gradual typing by itself is already

challenging. Some previous studies [2] [4] [14] tried

to extend gradual typing with explicit polymor-

phism like System F, but failed to meet criteria for

parametric polymorphism and gradual typing [6].

For example, consider a function f = (ΛX.λx :

X.(x ::?) :: Bool), where :: represents type ascrip-

tion. Since we want ? to be consistent [11] with

any other type, this term is well-typed and has type

∀X.X → Bool. Thus, we should able to apply this

function to any type and a value of that type, and

get a value of type Bool. Nonetheless, if we just

substitute type variables as in System F, we find

that f can accept only a value of the Bool type,

as in the following examples (where ⇝ represents

elaboration into cast calculus and 7→ reduction):

f [Bool] true

⇝ (ΛX.λx : X.〈Bool ⇐ ?〉〈? ⇐ X〉x) [Bool] true
7→∗ 〈Bool ⇐ ?〉〈? ⇐ Bool〉true
7→∗ true

f [Int] 1

⇝ (ΛX.λx : X.〈Bool ⇐ ?〉〈? ⇐ X〉x) [Int] 1
7→∗ 〈Bool ⇐ ?〉〈? ⇐ Int〉1
7→∗ error

This violates parametricity since behavior of the

function differs depending on its type argument.

To ensure parametricity, Ahmed et al. [2] used

sealing [5] [9] [13] in their polymorphic gradual lan-

guage, later called λB [2]. When we apply a poly-

morphic function to a value, we seal the value with

a fresh key. Then, the applied function can not in-

spect inside the sealed value. In λB, because they

try to make a conservative extension of System F,

the sealing and unsealing are implicit and are au-

tomatically inserted by type-directed coercion.

Since the insertion of sealing is type-directed, λB

violates dynamic gradual guarantee [4]. The grad-

ual guarantee is one of the “refined criteria” for

gradually typed languages, presented by Siek et

al. [12]. It captures the idea that replacing types

with ? does not introduce more errors. λB does not

satisfy (dynamic) gradual guarantee, as in:

((ΛX.λx : X.x :: X) Int 1) + 1

7→∗ (unsealX(sealX1)) + 1

7→∗ 2

((ΛX.λx : X.x ::?) Int 1) + 1

7→∗ (sealX1) + 1

7→∗ error
Other studies [4] [14] also have similar difficulties

with gradual guarantee and parametricity. Ahmed

et al. [6] pointed out these difficulties and avoided

them by means of explicit sealing manually written

by programmers. With this idea, they defined a

polymorphic gradual language, PolyGν .

Since we want our language to satisfy para-

metricity and dynamic gradual guarantee, we adopt

PolyGν as our base language that we extend with

typed holes.

1. 2 Challenge of Incomplete Polymorphic

Terms

Extending polymorphic calculus with holes

brings two challenges about programs that are in-

complete regarding polymorphic types: unspecified

formal type parameters and unbound type vari-

ables.

Unspecified formal type parameters as in ΛLM.M
are needed since they can not just be replaced with



fresh X ′ like ΛX ′.M , since doing so breaks our in-

tention that ΛLM.M is an incomplete program and

cannot be applied, that is, its type application like

(ΛLM.M)[. . . ] cannot be reduced. We thus introduce

ΛLM.M as distinct syntax, and give it a proper typ-

ing rule and no evaluation rule. (Similar consider-

ations are required for type application in PolyGν ,

which also binds type variables.) We also treat

anonymous term abstraction λLM.M , which is not

mentioned in Hazelnut [8] or Hazelnut Live [7] but

is present in their implementation Hazel [1].

Unbound term variables are actually imple-

mented in Hazel [1], but are not mentioned in ei-

ther Hazelnut [8] or Hazelnut Live [7]. In Hazel-

nut Live, since a term inside a hole has to be well

typed under the same type environment, it cannot

contain an unbound (term) variable. (In Hazelnut,

unbound variables cannot even be written with the

editor.) By contrast, we let the type environment

in holes extend the outside environment, so as to

allow unbound variables inside.

These extensions apply to both term and type

parameters and variables, but would be useful in

particular for types, which programmers are more

likely to omit or forget.

1. 3 Contributions

We thus define our new language PolyGνH that

is extended from PolyGν with hole expressions

and expressions with unspecified formal parame-

ters. We also define an internal language PolyCνH,

where actual reduction occurs, and elaboration

from PolyGνH to PolyCν .

2 Preliminaries

2. 1 Hazelnut Live

Hazelnut Live [7] is a core calculus of Hazel [1]

that evaluates incomplete expressions. The syntax

of Hazelnut Live is shown in Figure 1. Terms are

divided into two categories: external expressions e,

and internal expressions d.

External expressions correspond to user input

and are elaborated to internal expressions before

evaluation. b represents base types such as Int and

Bool, and c represents constants that have base

types. Other than orthodox terms for functional

programming languages, they added two main in-

ventions to the external language: type holes LM,
which coincide with dynamic types ? in gradual

typing [11], and hole expressions, which represent

the parts where terms of correct types are expected

but missing. Hole expressions consist of empty

holes LMu and non-empty holes LeMu. The hole name

u is given to each hole expression as an identifier.

Empty and non-empty holes respectively represent

missing expressions and expressions that have type

inconsistency.

Figure 2 shows typing rules for the external lan-

guage. The type system is defined in a bidirectional

style [10]. The type synthesis judgement Γ ` e ⇒ τ

means under typing context Γ, external expression

e synthesizes type τ . The type analysis judgement

Γ ` e ⇒ τ checks the expression e against τ . Hole

expressions have the hole type LM but non-empty

holes require expressions inside to be well-typed.

Most of the typing rules follow gradual typing [11],

where type consistency relation ∼ and matching

function fun(τ) are used instead of type equiva-

lence.

External expressions are elaborated into internal

according to Figure 3, where explicit casts 〈τ ⇒ τ〉
are inserted based on the type consistency relation.

As a result, type consistency is used only in the

typing rule for explicit casts in Figure 2. Omar

et al. [7] also introduced a new term called failed

cast d〈⇒ LM ⇏ T 〉, which represents a dynamic cast

error rather than abortion, so as to continue evalu-

ation of other parts. For failed casts, we require the

two types G1 and G2 are ground, that is, consist of

only base types and LM → LM. In both elaboration



HTyp τ ::= b | τ → τ | LM
HExp e ::= c | x | λx : τ.e | λx.e | e e | LMu | LeMu | e : τ

IHExp d ::= c | x | λx : τ.d | d d | LMuσ | LdMuσ | d〈τ ⇒ τ〉 | d〈τ ⇒ LM ⇏ τ〉

d〈τ1 ⇒ τ2 ⇒ τ3〉
def
= d〈τ1 ⇒ τ2〉〈τ2 ⇒ τ3〉

Fig. 1 Hazelnut Live Syntax

Γ ` e ⇒ τ e synthesizes type τ

Γ ` c ⇒ b
x : τ ∈ Γ
Γ ` x ⇒ τ

Γ, x : τ1 ` e ⇒ τ2

Γ ` λx : τ1.e ⇒ τ1 → τ2

Γ ` e1 ⇒ τ1 fun(τ1) = τ2 → τ Γ ` e2 ⇐ τ2

Γ ` e1 e2 ⇒ τ

Γ ` LMu ⇒ LM Γ ` e ⇒ τ
Γ ` LeMu ⇒ LM Γ ` e ⇐ τ

Γ ` e : τ ⇒ τ

Γ ` e ⇐ τ e analyzes against type τ

fun(τ) = τ1 → τ2 Γ, x : τ1 ` e ⇐ τ2

Γ ` λx.e ⇐ τ

Γ ` e ⇒ τ τ ∼ τ ′

Γ ` e ⇐ τ ′

τ1 ∼ τ2 τ1 is consistent with τ2

LM ∼ τ τ ∼ LM τ ∼ τ

τ1 ∼ τ ′
1 τ2 ∼ τ ′

2

τ1 → τ2 ∼ τ ′
1 → τ ′

2

fun(LM) = LM → LM fun(τ1 → τ2) = τ1 → τ2

Fig. 2 Hazelnut Live Typing

and typing rules, hole context ∆ is used to ensure

the consistency of environments among holes with

the same name u.

Since Hazelnut Live receives incomplete pro-

grams, well-typed expressions do not always evalu-

ate to values but may become irreducible because of

hole expressions and failed casts. To represent such

irreducible states, indets (indeterminate terms) are

defined, and finals (irreducible expressions) are de-

fined as either values or indets, as in Figure 5. As

in gradual typing, values with an irreducible cast

are also treated as values (originally called “boxed

values” in [7]).

Reduction rules (defined only for internal expres-

sions) are shown in Figure 6. First, there is beta

reduction. Casts between identical types are re-

moved. Casts between function types break down

when the function is applied to an argument. Casts

from or to hole type are extended to go through

matching ground types, which are uniquely deter-

mined. In the case of a projection (a cast from ?

to a ground type) after an injection (a cast from

a ground type to LM), the cast is removed, or else

reduced to a failed cast term, according to whether

those (ground) types are the same or not.

2. 2 PolyGν

As we discussed in the introduction, PolyGν [6] is

a polymorphic gradual language with explicit seal-

ing. Figure 7 is the syntax of PolyGν . They write



Γ ` e ⇒ τ ⇝ d a ∆ e synthesizes type τ and elaborates to d

Γ ` c ⇒ b⇝ c a ∅
x : τ ∈ Γ

Γ ` x ⇒ τ ⇝ x a ∅
Γ, x : τ1 ` e ⇒ τ2 ⇝ e a ∆

Γ ` λx : τ1.e ⇒ τ1 → τ2 ⇝ λx : τ1.d a ∆

Γ ` e1 ⇒ τ1 fun(τ1) = τ2 → τ

Γ ` e1 ⇐ τ2 → τ ⇝ d1 : τ ′
1 a ∆1 Γ ` e2 ⇐ τ2 ⇝ d2 : τ ′

2 a ∆2

Γ ` e1 e2 ⇒ τ ⇝ (d1〈τ ′
1 ⇒ τ2 → τ〉) (d2〈τ ′

2 ⇒ τ2〉) a ∆1 ∪∆2

Γ ` LMu ⇒ LM⇝ LMuid(Γ) a u :: LM[Γ] Γ ` e ⇒ τ ⇝ d a ∆
Γ ` LeMu ⇒ LM⇝ LdMuid(Γ) a ∆, u :: LM[Γ]

Γ ` e ⇐ τ ⇝ d : τ ′ a ∆

Γ ` e : τ ⇒ τ ⇝ d〈τ ′ ⇒ τ〉 a ∆

Γ ` e ⇐ τ ⇝ d : τ2 a ∆ e analyzes against type τ1 and elaborates to d of consistent type τ2

fun(τ) = τ1 → τ2 Γ, x : τ1 ` e ⇐ τ2 a d : τ ′
2 a ∆

Γ ` λx.e ⇐ τ ⇝ λx : τ1.d : τ1 → τ ′
2 a ∆

e 6= LMu e 6= Le′Mu
Γ ` e ⇒ τ ′ ⇝ d a ∆ τ ∼ τ ′

Γ ` e ⇐ τ ⇝ d : τ ′ a ∆

Γ ` LMu ⇐ τ ⇝ LMuid(Γ) : τ a u :: τ [Γ]
Γ ` e ⇒ τ ′ ⇝ d a ∆

Γ ` LeMu ⇐ τ ⇝ LdMuid(Γ) : τ a ∆, u :: τ [Γ]

Fig. 3 Hazelnut Live Elaboration

∆;Γ ` d : τ d has type τ

u :: τ [Γ′] ∈ ∆ ∆;Γ ` σ : Γ′

∆;Γ ` LMuσ : τ

u :: τ [Γ′] ∈ ∆ ∆;Γ ` σ : Γ′ ∆;Γ ` d : τ ′

∆;Γ ` LMuσ : τ

∆;Γ ` d : τ1 τ1 ∼ τ2

∆;Γ ` d〈τ1 ⇒ τ2〉 : τ2
∆;Γ ` d : G1 G1 6= G2

∆;Γ ` d〈G1 ⇒ LM ⇏ G2〉 : G2

Fig. 4 Hazel Live Typing for internal language

∀ν and ∃ν instead of ∀ and ∃ to emphasize fresh-

ness of the abstract types. Ground types are also

extended with universal and existential types. For

the terms, they have is(G)?M for dynamic type

checking. It checks whether M returns a value that

is consistent with the ground type G, and returns

true or false accordingly.

Typing for PolyGν is presented in Figure 8. The

environment Γ contains not only ordinary typing

assumptions x : A but also abstract type variable

assumptions X and known type variable assump-

tions X ∼= A. We assume all (term and type) vari-

ables in the domain of Γ are disjoint. To support

explicit sealing, some type variables are exposed as

in:

unsealX((ΛX.λx : X.x) {X ∼= Bool} sealXtrue)

The type variable X in unsealX , {X ∼= Bool}, and
sealX is out of the scope ΛX.λx : X.x. To justify

such extrusion, the typing relation of PolyGν takes

the form Γ ` M : A; Γo, where a type application

{X ∼= A} adds known the type variable assump-

tion X ∼= A to Γo, which is then used for typing



d final d is final
d val
d final

d indet
d final

d val d is a value

c val λx : τ.d val

τ1 → τ2 6= τ3 → τ4 d val

d〈τ1 → τ2 ⇒ τ3 → τ4〉 val
d val τ ground

d〈τ ⇒ LM〉 val
d indet d is indeterminate

LMuσ indet
d finalLdMuσ indet

d1 6= d′1〈τ1 → τ2 ⇒ τ3 → τ4〉
d1 d2 indet

d indet τ ground

d〈τ ⇒ LM〉 indet d 6= d′〈τ ′ ⇒ LM〉 d indet τ ground

d〈LM ⇒ τ〉 indet

τ1 → τ2 6= τ3 → τ4 d indet

d〈τ1 → τ2 ⇒ τ3 → τ4〉 indet
d final τ1 ground τ2 ground τ1 6= τ2

d〈τ1 ⇒ LM ⇏ τ2〉 indet

Fig. 5 Hazelnut Live Final Forms

Evaluation Contexts E ::= [ ] | E d | f E | LEMuσ | E〈τ ⇒ τ〉 | E〈τ ⇒ LM ⇏ τ〉

d 7→ d′ Reduction

E[(λx : τ.d) f ] 7→ E[d[f/x]]

E[f〈τ ⇒ τ〉] 7→ E[f ]

E[(f1〈τ1 → τ2 ⇒ τ3 → τ4〉) f2] 7→ E[f1(f2〈τ3 ⇒ τ1〉)〈τ2 ⇒ τ4〉]
E[f〈τ ⇒ LM〉] 7→ E[f〈τ ⇒ G ⇒ LM〉] if τ 6= LM, τ 6= G, τ ∼ G

E[f〈LM ⇒ τ〉] 7→ E[f〈LM ⇒ G ⇒ τ〉] if τ 6= LM, τ 6= G, τ ∼ G

E[f〈G ⇒ LM ⇒ G〉] 7→ E[f ]

E[f〈G1 ⇒ LM ⇒ G2〉] 7→ E[f〈G ⇒ LM ⇏ G2〉] (if G1 6= G2)

Substitution for hole expressions LMuσ[d/x] = LMuσ[d/x]Ld′Muσ[d/x] = Ld′[d/x]Muσ[d/x]

Fig. 6 Dynamic Semantics of the Internal Expressions

Types A ::= ? | X | Bool | A×A | A → A | ∃νX.A | ∀νX.A

Ground Types G ::= X | Bool | ?× ? | ? → ? | ∃νX.? | ∀νX.?

Terms M ::= x | M :: A | sealXM | unsealXM | is(G)?M | true | false
| if M then M else M | (M,M) | let(x, x) = M ;M

| M M | λx : A.M | packν(X ∼= A,M) | unpack(X,x) = M ;M

| ΛνX.M | M{X ∼= A} | let x = M ;M

Fig. 7 Syntax of PolyGν



Environment Γ ::= · | Γ, x : A | Γ, X | Γ, X ∼= A

Γ ` M : A; Γo A ∼ B

Γ ` (M :: B) : B; Γo

x : A ∈ Γ
Γ ` x : A; ·

Γ ` M : A; ΓM Γ,ΓM , x : A ` N : B; ΓN

Γ ` let x = M ;N : B; ΓM ,ΓN

Γ ` M : B; Γo X ∼= A ∈ Γ,Γo B ∼ A

Γ ` sealXM : X; Γo

Γ ` M : B; Γo X ∼= A ∈ Γ,Γo B ∼ X

Γ ` unsealXM : A; Γo

Γ ` M : A; Γo Γ,Γo ` G

Γ ` is(G)?M : Bool; Γo Γ ` true : Bool; · Γ ` false : Bool; ·

Γ ` M : A; ΓM Γ,ΓM ` Nt : Bt; Γt Γ,ΓM ` Nf : Bf ; Γf A ∼ Bool

Γ ` if M then Nt else Nf : Bt uBf ; ΓM ,Γt ∩ Γf

Γ ` M1 : A1; Γ1 Γ,Γ1 ` M2 : A2; Γ2

Γ ` (M1,M2) : A1 ×A2; Γ1,Γ2

Γ ` M : A; ΓM Γ,ΓM , x : π1(A), y : π2(A) ` N : B; ΓN

Γ ` let(x, y) = M ;N : B; ΓM ,ΓN

Γ ` A Γ, x : A ` M : B; Γo

Γ ` λx : A.M : A → B; ·
Γ ` M : A; ΓM Γ,ΓM ` N : B; ΓN dom(A) ∼ B

Γ ` M N : cod(A); ΓM ,ΓN

Γ, X ∼= A ` M : B; Γo

Γ ` packν(X ∼= A,M) : ∃νX.B; ·

Γ ` M : A; ΓM

Γ,ΓM , X, x : un∃ν(A) ` N : B; ΓN Γ,ΓM ,ΓN |X ` B

Γ ` unpack(X,x) = M ;N : B; ΓM ,ΓN |X

Γ, X ` M : A; Γo

Γ ` ΛνX.M : ∀νX.A; ·
Γ ` M : A; ΓM Γ,ΓM ` B

Γ ` M{X ∼= B} : un∀ν(A); ΓM , X ∼= B

? ∼ A A ∼ ? Bool ∼ Bool X ∼ X

A1 ∼ B1 A2 ∼ B2

A1 → A2 ∼ B1 → B2

A1 ∼ B1 A2 ∼ B2

A1 ×A2 ∼ B1 ×B2

A ∼ B
∃νX.A ∼ ∃νX.B

A ∼ B
∀νX.A ∼ ∀νX.B

dom(A → B) = A

dom(?) = ?

cod(A → B) = B

cod(?) = ?

πi(A1 ×A2) = Ai

πi(?) = ?

un∀ν(∀νX.A) = A

un∀ν(?) = ?

un∃ν(∃νX.A) = A

un∃ν(?) = ?

·|Γ′ = ·
(X ∼= A,Γ)|Γ′ = X ∼= A, (Γ|Γ′) (FV (A) ∩ Γ′ = ∅)
(X ∼= A,Γ)|Γ′ = Γ|Γ′ (FV (A) ∩ Γ′ 6= ∅)

Fig. 8 Static Semantics of PolyGν



the continuation including sealX and unsealX .

For the syntax of the cast calculus PolyCν , they

add fresh seal σ to types as in Figure 9. For the

terms, they remove type ascription M :: A and add

an error ℧ and explicit casts. Forms 〈A⊑〉 ↣ M and

〈A⊑〉 ↞ M represent upcasts and downcasts respec-

tively. Instead of writing casts between two dif-

ferent types, they use witness expressions for type

precision derived as in Figure 10. injGM represents

injection, which is a cast from the ground type G to

the dynamic type ?. PolyCν also has explicit type

generation hide X ∼= A;M , packages with latent

casts packν(X ∼= A′, [A⊑ l, . . . ],M), and sealing

and unsealing with seals (in addition to those with

type variables).

Typing for PolyCν , presented in Figure 11, is

trivial except for Γo. Since there is a new form

hide X ∼= A;M that stops the scope of X ∼= A

going further outwards, the bodies inside delayed

thunks such as λ are expected to manually hide

the bindings to make Γo empty.

Elaboration from PolyGν to PolyCν is defined

in Figure 12. The ascription form M :: A elabo-

rates to upcast to ? followed by downcast to type

A. The bodies of the thunks hide the type bind-

ings that are generated inside, by using the function

hide Γ ⊆ Γ′;M which hides all names in Γ′ that are

not present in Γ.

The dynamic semantics of PolyCν is presented

in Figure 13. The relation is defined in the form of

Σ▷M 7→ Σ′ ▷M ′. A store Σ consists of σ : A which

binds freshly generated type σ to a type A. When

the step does not change Σ, we write M 7→ M ′ as

an abbreviation of Σ ▷ M 7→ Σ ▷ M ′.

Unsealing a sealed value removes both unseal-

ing and sealing, and gets the value inside. is(G)?V

checks whether the type of the value V is consis-

tent with G. hide generates a fresh seal σ, adds the

binding σ : A to Σ, and substitutes the type vari-

able X with σ. unpack also generates a fresh seal

and applies casts that have been accumulated in

the second, extended parameter of pack. l is used

to abbreviate rules for ↣ and ↞. Instantiation for

a universal type is just a substitution because the

binding is already generated by hide. The casts be-

tween pair types, function types, existential types,

and universal types are decomposed and separately

applied, where l− represents the opposite arrow,

i.e., ↣

−
= ↞ and ↣

−
= ↞.

3 External language

As we mentioned in the introduction, our goal

is to introduce hole expressions to a polymorphic

gradual language and to give static and dynamic

semantics to incomplete programs with polymor-

phism. We define a new calculus PolyGνH by ex-

tending PolyGν with hole expressions LM and LMM of
Hazelnut Live. The syntax for those added terms

are in Figure 14. Since we do not consider hole

contexts, the hole names u are omitted.

Typing rules for the new terms are shown in Fig-

ure 15. An empty hole expression LM has type ?

and any Γo. For non-empty holes, the additional

environment Γ′ inside allows M to have unbound

variables. This works for both term and type vari-

ables. Also, the outward type assumption Γ′
o is ig-

nored and another Γo is just assumed, because we

do not want wrongly written terms influence the

rest of the program.

For functions λLM : A. M with an unspecified for-

mal parameter, we could either introduce a fresh

variable, or no variable at all, to the environment

Γ. We choose the latter for simplicity.

By contrast, we do introduce a fresh type variable

X ′ for the unspecified type parameter of ΛνLM. M ,

for the type binder ∀νX ′ instead of introducing yet

another syntax ∀νLM. A.

Similarly, type applications M{LM ∼= B} intro-

duce a fresh type variable X ′.

Packing packν(LM ∼= A,M) is also typed by intro-



Type names α ::= σ | X
Types A,B + ::= σ

Ground Types G ::= α | Bool | ?× ? | ? → ? | ∃νX.? | ∀νX.?

Precision derivations A⊑, B⊑ ::= ? | tagG(A⊑) | α | Bool | A⊑ ×A⊑ | A⊑ → A⊑

| ∃νX.A⊑ | ∀νX.A⊑

Values V ::= sealαV | true | false | (V, V ) | λx : A.M

| ΛνX.M | injGV | 〈A⊑
1 → A⊑

2 〉 ↣ M | 〈A⊑
1 → A⊑

2 〉 ↞ M
| 〈∀νX.A⊑〉 ↣ M | 〈∀νX.A⊑〉 ↞ M
| packν(X ∼= A′, [A⊑ l],M)

Expressions M,N − ::= (M :: A)

+ ::= ℧ | 〈A⊑〉 ↣ M | 〈A⊑〉 ↞ M | hide X ∼= A;M | injGM
| packν(X ∼= A′, [A v↕, . . . ],M) | sealσM | unsealσM

Evaluation Context E ::= [ ] | (E,M) | (V,E) | E[A] | E M | V E | injGE
| if E then M else M if I then M else M

| let(x, x) = E;M | 〈A⊑〉 ↣ E
| unpack(X,x) = E;M | sealαE | unsealαE | 〈A⊑〉 ↞ E

Fig. 9 Syntax of PolyCν

Γ ` A⊑ : A v G

Γ ` tagG(A
⊑) : A v ? Γ ` ? : ? v ? Γ ` Bool : Bool v Bool

X ∈ Γ
Γ ` X : X v X

Γ ` A⊑
1 : Al1 v Ar1 Γ ` A⊑

2 : Al2 v Ar2

Γ ` A⊑
1 ×A⊑

2 : Al1 ×Al2 v Ar1 ×Ar2

Γ ` A⊑
1 : Al1 v Ar1 Γ ` A⊑

2 : Al2 v Ar2

Γ ` A⊑
1 → A⊑

2 : Al1 → Al2 v Ar1 ×Ar2

Γ ` A⊑ : Al v Ar

Γ ` ∃νA⊑ : ∃νA⊑
l v ∃νA⊑

r

Γ ` A⊑ : Al v Ar

Γ ` ∀νA⊑ : ∀νA⊑
l v ∃νA⊑

r

Fig. 10 PolyCν Type Precision

ducing fresh X ′ as in the rule for Λ.

Since unpack binds two (term or type) variables,

we add 3 rules for each combination of missing pa-

rameters. The case where only a term or type vari-

able is unspecified is similar to the case of λLM or

ΛνLM. However, when both parameters are missing,

we do not have to introduce fresh X ′ since it does

not appear anywhere.

Sealing sealLMM and unsealing unsealLMM with

an unspecified key are typed just as sealXM and

unsealXM for some X.

Dynamic type check (is(LM)?M) is trivial.

There are also new let expressions with one or

two unspecified bound (term) variables. Their typ-

ing rules are similar to that of λ.

4 Internal language

The cast calculus PolyCνH (shown in Figure

16) is obtained by elaborating PolyGνH like eleb-

oration from PolyGν to PolyCν , or, equivalently,

adopting Hazelnut Live for PolyCν like we did for

PolyGν , and by replacing errors ℧ (abortion of the

entire program) with indeterminate failed casts.

We added rules, shown in Figure 17, for elabora-



Γ ` M : Al; ΓM Γ ` A⊑ : Al v Ar

Γ ` 〈A⊑〉 ↣ M : Ar; ΓM

Γ ` M : Ar; ΓM Γ ` A⊑ : Al v Ar

Γ ` 〈A⊑〉 ↞ M : Al; ΓM

Γ ` M : ΓM , X ∼= A,Γ′
M Γ,ΓM ` Γ′

M

Γ ` hide X ∼= A;M ; ΓM ,Γ′
M

x : A ∈ Γ
Γ ` x : A; ·

Γ ` M : A; ΓM Γ,ΓM , x : A ` N : B; ΓN

Γ ` let x = M ;N : B; ΓM ,ΓN

Γ ` M : A; Γo X ∼= A ∈ Γ,Γo

Γ ` sealXM : X; Γo

Γ ` M : A; Γo X ∼= A ∈ Γ,Γo

Γ ` unsealXM : A; Γo

Γ ` M : ?; Γo Γ,Γo ` G

Γ ` is(G)?M : Bool; Γo Γ ` true : Bool; · Γ ` false : Bool; ·

Γ ` M : Bool; Γo Γ,ΓM ` Nt : B; ΓN Γ,ΓM ` Nf : B; ΓN

Γ ` if M then Nt else Nf : B; ΓM ,ΓN

Γ ` M1 : A1; Γ1 Γ,Γ1 ` M2 : A2; Γ2

Γ ` (M1,M2) : A1 ×A2; Γ1,Γ2

Γ ` M : A1 ×A2; ΓM Γ,ΓM , x : A1, y : A2 ` N : B; ΓN

Γ ` let(x, y) = M ;N : B; ΓM ,ΓN

Γ ` A Γ, x : A ` M : B; ·
Γ ` λx : A.M : A → B; ·

Γ ` M : A → B; ΓM Γ,ΓM ` N : A; ΓN

Γ ` M N : B; ΓM ,ΓN

Γ, X ∼= A ` M : B; ·
Γ ` packν(X ∼= A,M) : ∃νX.B; ·

Γ ` M : ∃νX.A; ΓM

Γ,ΓM , X, x : A ` N : B; ΓN Γ,ΓM ,ΓN ` B

Γ ` unpack(X,x) = M ;N : B; ΓM ,ΓN

Γ, X ` M : A; ·
Γ ` ΛνX.M : ∀νX.A; ·

Γ ` M : ∀νX.A; ΓM Γ,ΓM ` B

Γ ` M{X ∼= B} : A; ΓM , X ∼= B

Fig. 11 PolyCν Typing

tion of hole expressions. For non-empty holes, we

want to hide the variables that are only valid inside

of the holes. Thus we extend hide Γs ⊆ Γb;M for

type environments containing term variables x : A

and abstract type variables X, which we bind to

?, in addition to known type variables X ∼= A.

We furthermore introduce known type variable as-

sumptions that are present only outside (not inside)

holes, by inserting dummy type applications.

To define dynamic semantics, we define final and

indeterminate forms as in Figure 18. As we dis-

cussed in the introduction, we have added the

new syntax λLM : A.M and λLM.M , rather than

λx′ : A.M and λX.M for fresh x′ or X to treat

them as indeterminate even if they are applied. The

definition of values is unchanged from PolyCν .

The dynamic semantics of PolyCνH is defined in

Figure 19. Most cases are obtained by replacing

V with F from that of PolyCν . The other differ-

ences are evaluation contexts for non-empty holesLEM and failed casts 〈G ⇍ ? ⇐ H〉E, and the reduc-

tion rule for failed casts, all of which are essentially

the same as in Hazelnut Live.



(M :: B)+ = 〈B?⊑〉 ↞ 〈A?⊑〉 ↣ M+ (where M : A and A?⊑ : A v ?)

x+ = x

(let x = M ;N)+ = let x = M+;N+

(sealXM)+ = sealX(M :: A)+

(unsealXM)+ = unsealX(X

⇝

M) (where X ∼= A)

(is(G)?M)+ = is(G)?(〈A?⊑〉 ↣ M+) (where M : A and A?⊑ : A v ?)

b+ = b (where b ∈ true, false)

(if M then Nt else Nf ) = if Bool

⇝

M then 〈B⊑
t 〉 ↞ hide Γt ⊆ Γt ∩ Γf ;N

+
t

else 〈B⊑
f 〉 ↞ hide Γf ⊆ Γt ∩ Γf ;N

+
f

(where Γ ` if M then Nt else Nf : Bt uBf ; ΓM ,Γt ∩ Γf )

(and B⊑
t : Bt uBf v)Bt, B⊑

f : Bt uBf v Bf )

(M1,M2)
+ = (M+

1 ,M+
2 )

(let(x, y) = M ;N) = let(x, y) = ?× ?

⇝

M ;N+

(λx : A.M)+ = λx : A.hide · ⊆ Γo;M
+ (where M : A; Γo)

(M N)+ = (? → ?

⇝

M)(N :: dom(A))+ (where M : A)

(packν(X ∼= A,M))+ = packν(X ∼= A, hide · ⊆ Γo,M
+) (where M : B; Γo)

(unpack(X,x) = M ;N)+ = unpack(X,x) = ∃νX.?

⇝

M ; hide ΓN|X ⊆ ΓN ;N+

ΛνX.M+ = ΛνX.hide · ⊆ Γo;M
+

M{X ∼= B}+ = (∀νX.?

⇝

M){X ∼= B}

G

⇝

M = 〈tagG(G)〉 ↞ M+ (when M : ?)

G

⇝

M = M+ (otherwise)

hide Γs ⊆ (Γb, X ∼= A);M = hide Γs ⊆ Γb; hideX ∼= A;M (X /∈ Γs)

hide (Γs, X ∼= A) ⊆ (Γb, X ∼= A);M = hide Γs ⊆ Γb;M

hide · ⊆ ·;M = M

Fig. 12 Elaboration from PolyGν to PolyCν

5 Properties

In this chapter, we prove the type safety (progress

and preservation) of our new calculus PolyCνH.†1

To prove progress, we prove canonical forms lemma

according to the definition of values.

Lemma 5.1 (Canonical Forms for Values). If

Σ; · ` V : A; · then:
• A = Bool and V = true or false

†1 Proving type preservation of the elaboration from

PolyGνH to PolyCνH is out of the scope of the

present paper and is left for future work.

• A = σ and V = sealσV
′

• A = A1 ×A2 and V = (V1, V2)

• A = A1 → A2 and V = λx : A1.M
′ or

〈A⊑
1 → A⊑

2 〉 l V ′

• A = ∀νX.A′ and V = ΛνX.M ′ or

〈∀νX.A′⊑〉 l V ′

• A = ∃νX.A′ and V = packν(X ∼= A′, [A⊑ l
],M ′)

• A = ? and V = injGV
′

We define a well-typed closed term as Σ1; · `
M1 : A; ·, where the type judgements Σ; Γ `



E[℧] 7→ ℧ where E 6= [ ]

E[unsealσ(sealσV )] 7→ E[V ]

E[is(G)?(injGV )] 7→ E[true]

E[is(G)?(injHV )] 7→ E[false] where G 6= H

Σ ▷ E[hide X ∼= A;M ] 7→ Σ, σ : A ▷ E[M [σ/X]]

Σ ▷ E

unpack(X,x) = packν(X ∼= A′, [A⊑ l],M);

N

 7→ Σ, σ : A′ ▷ E

let x = 〈A⊑〉 lM [σ/X];

N [σ/X]


E[packν(X ∼= A,M)] 7→ E[packν(X ∼= A′, [],M)]

E[(ΛνX.M){σ ∼= A}] 7→ E[M [σ/X]]

E[〈A⊑〉 l V ] 7→ E[V ] where A⊑ ∈ {Bool, σ, ?}
E[〈A⊑

1 ×A⊑
2 〉 l (V1, V2)] 7→ E[(〈A⊑

1 〉 l V1, 〈A⊑
2 〉 l V2)]

E[(〈A⊑
1 → A⊑

2 〉 l V1) V2] 7→ E[〈A⊑
2 〉 l (V1 〈A⊑

2 〉 l− V2)]

E[〈∃νX.A⊑〉 l packν(X ∼= A, [A′⊑ l′, . . . ],M)] 7→ E[packν(X ∼= A, [A⊑ l, A′⊑ l′, . . . ],M)]

E[〈∀νX.A⊑〉 l V {σ ∼= A}] 7→ E[〈A⊑[σ/X]〉 l (V {σ ∼= A})]
E[〈tagG(A⊑)〉 ↣ V ] 7→ E[injG〈A⊑〉 ↣ V ]

E[〈tagG(A⊑)〉 ↞ injGV ] 7→ E[〈A⊑〉 ↞ V ]

E[〈tagG(A⊑)〉 ↞ injHV ] 7→ ℧ where H 6= G

Fig. 13 Dynamic Semantics PolyCν

Terms M + ::= LM | LMM
| λLM : A. M

| ΛνLM. M | M{LM ∼= A}
| packν(LM ∼= A,M)

| unpack(LM, LM) = M ;N

| unpack(X, LM) = M ;N

| unpack(LM, x) = M ;N

| sealLMM | unsealLMM | is(LM)?M
| let LM = M ;N | let (LM, LM) = M ;N

| let (x, LM) = M ;N | let (LM, y) = M ;N

Fig. 14 PolyGνH Syntax

M : A; Γo with store typing Σ can be defined as

in PolyCν [http://www.ccs.neu.edu/home/amal/

papers/gradparam-tr.pdf, Fig. 23].

Progress theorem ensures irreducible terms are

either a value or an indet, i.e., final.

Theorem 5.2 (Progress). If Σ1; · ` M1 : A; · then
either Σ1 ▷M1 7→ Σ2 ▷M2, or M1 = V , or M1 = I.

Proof. Induction on the derivation of Σ1; · ` M1 :

A; ·. Most cases amount to checking that our defi-

nition of indets covers irreducible non-values.

As for preservation, we need to prove substitu-

tion lemmas for terms and types.

Lemma 5.3 (Substitution Lemma). If Σ;Γ, x :

A ` M1 : B; Γo and Σ;Γ ` M2 : A; · then

Σ;Γ ` M1[M2/x] : B; Γo

Proof. Induction on derivation of Σ; Γ, x : A ` M1 :



Γ ` LM : ? ; Γo

Γ,Γ′ ` M : A ; Γ′
o

Γ ` LMM : ? ; Γo

Γ ` A Γ ` M : B; Γo

Γ ` λLM : A.M : A → B; ·

Γ, X ′ ` M : A; Γo X ′ /∈ Γ,Γo

Γ ` ΛLM.M : ∀νX ′.A; ·
Γ ` M : A; ΓM Γ,ΓM ` B X ′ /∈ Γ,ΓM

Γ ` M {LM ∼= B} : un∀ν(A)[X ′/X]; ΓM , X ′ ∼= B

Γ, X ′ ∼= A,` M : B; Γo X ′ /∈ Γ,Γo

Γ ` packν(LM ∼= A,M) : ∃νX ′.B; ·

Γ ` M : A; ΓM Γ,ΓM , X ` N : B; ΓN Γ,ΓM ,ΓN|X ` B

Γ ` unpack(X, LM) = M ;N : B; ΓM ,ΓN|X

Γ ` M : A; ΓM Γ,ΓM , X ′, x : un∃ν(A)[X ′/X] ` N : B; ΓN Γ,ΓM ,ΓN|X′ ` B

Γ ` unpack(LM, x) = M ;N : B; ΓM ,ΓN|X′

Γ ` M : A; ΓM Γ,ΓM ` N : B; ΓN

Γ ` unpack(LM, LM) = M ;N : B; ΓM ,ΓN

Γ ` M : A; Γo

Γ ` is(LM)?M : Bool; Γo

Γ ` M : B; Γo X ∼= A ∈ Γ,Γo A ∼ B

Γ ` sealLMM : X; Γo

Γ ` M : B; Γo X ∼= A ∈ Γ,Γo B ∼ X

Γ ` unsealLMM : A; Γo

Γ ` M : A; ΓM Γ,ΓM ` N : B; ΓN

Γ ` let LM = M ;N : B; ΓM ,ΓN

Γ ` M : A; ΓM Γ,ΓM ` N : B; ΓN

Γ ` let (LM, LM) = M ;N : B; ΓM ,ΓN

Γ ` M : A; ΓM Γ,ΓM , x : π1(A) ` N : B; ΓN

Γ ` let (x, LM) = M ;N : B; ΓM ,ΓN

Γ ` M : A; ΓM Γ,ΓM , y : π2(A) ` N : B; ΓN

Γ ` let (LM, y) = M ;N : B; ΓM ,ΓN

Fig. 15 PolyGνH Typing

B; Γo.

Lemma 5.4 (Substitution Lemma for Type). If

Σ;Γ, X ∼= A ` M1 : B; Γo or Σ;Γ, X ` M1 :

B; Γo or Σ;Γ ` M1 : B; Γo, X ∼= A then Σ, σ :

A; Γ[σ/X] ` M1[σ/X] : B[σ/X]; Γo[σ/X]

Proof. Induction on type derivation of M1.

We do not need to change the definition of preser-

vation even though substitution of a type variable

also substitutes the resulting type, because the type

of a closed term does not contain type variables.

Theorem 5.5 (Preservation). If Σ1; · ` M1 : A; ·

and Σ1 ▷ M1 7→ Σ2 ▷ M2 then Σ2; · ` M2 : A; ·

Proof. Induction on derivation of Σ1; · ` M1 :

A; ·.

6 Conclusion

By combining two calculi, one with hole expres-

sions and one with polymorphic gradual typing, we

defined a calculus that can give dynamic meaning

to incomplete programs with polymorphism.

In this paper, we adopted explicit parametric

polymorphism like System F and explicit sealing

(and unsealing) of PolyGν . To reduce program-



Syntax

Terms M − ::= (M :: A)

+ ::= 〈A⊑〉 ↣ M | 〈A⊑〉 ↞ M | hide X ∼= A;M | injGM
| packν(X ∼= A′, [A v↕, . . . ],M) | sealσM | unsealσM
| 〈G ⇍ ? ⇐ H〉M

Typing

Γ ` LM : ? ; · Γ ` M : A ; Γo

Γ ` LMM : ? ; Γo

Γ ` M : H ; Γo

Γ ` 〈G ⇍ ? ⇐ H〉M : G ; Γo

Γ ` A Γ ` M : B; ·
Γ ` λLM : A.M : A → B; ·

Γ ` M : A; · X ′ /∈ Γ

Γ ` ΛLM.M : ∀νX ′.A; ·
Γ ` M : ∀νX ′.A; ΓM Γ,ΓM ` B X ′ /∈ Γ

Γ ` M {LM ∼= B} : A; ΓM , X ′ ∼= B

Γ, X ′ ∼= A,M ` M : B; · X ′ /∈ Γ

Γ ` packν(LM ∼= A,M) : ∃νX ′.B; ·

Γ ` M : ∃νX.A; ΓM Γ,ΓM , X ` N : B; ΓN Γ,ΓM ,` ΓN Γ,ΓM ,ΓN ` B

Γ ` unpack(X, LM) = M ;N : B; ΓM ,ΓN

Γ ` M : ∃νX ′.A; ΓM Γ,ΓM , X ′, x : A ` N : B; ΓN Γ,ΓM ,` ΓN Γ,ΓM ,ΓN ` B X ′ /∈ Γ

Γ ` unpack(LM, x) = M ;N : B; ΓM ,ΓN

Γ ` M : ∃νX ′.A; ΓM Γ,ΓM , X ′ ` N : B; ΓN Γ,ΓM ,` ΓN X ′ /∈ Γ

Γ ` unpack(LM, LM) = M ;N : B; ΓM ,ΓN

Γ ` M : A; Γo X ∼= A ∈ Γ,Γo

Γ ` sealLMM : X; Γo

Γ ` M : X; Γo X ∼= A ∈ Γ,Γo

Γ ` unsealLMM : A; Γo

Γ ` M : ?; Γo Γ ` G

Γ ` is(LM)?M : Bool; Γo

Γ ` M : A; ΓM Γ,ΓM ` N : B; ΓN

Γ ` let LM = M ;N : B; ΓM ,ΓN

Γ ` M : A1 ×A2; ΓM Γ,ΓM ` N : B; ΓN

Γ ` let (LM, LM) = M ;N : B; ΓM ,ΓN

Γ ` M : A1 ×A2; ΓM Γ,ΓM , x : A1 ` N : B; ΓN

Γ ` let (x, LM) = M ;N : B; ΓM ,ΓN

Γ ` M : A1 ×A2; ΓM Γ,ΓM , y : A2 ` N : B; ΓN

Γ ` let (LM, y) = M ;N : B; ΓM ,ΓN

Fig. 16 Syntax and Static Semantics of PolyCνH

mers’ burden, more implicit polymorphic gradual

typing as in [3] [15] would be desirable.

One of the languages that are mainly used in this

paper is Hazelnut Live, but it is rather a core cal-

culus than a surface language. It is part of Hazel,

live functional programming environment that can



LM+ = hide Γo ⊆ ·; LM (where Γ ` LM : ?; Γo)LMM+ = Lhide Γ ⊆ Γ,Γ′; hide Γo ⊆ Γ′
o;M

+M (where Γ,Γ′ ` M : A; Γo)

(let LM = M ;N)+ = let LM = M+;N+

(sealLMM)+ = sealLM(M :: X)+ (where M : X)

(unsealLMM)+ = unsealLM(X ⇝ M)

(where Γ ` M : A; Γo, A ∼ X and X ∼= B ∈ Γ,Γo)

(is(LM)?M)+ = is(LM)?(〈A?⊑〉 ↣ M+) (where M : A and A?⊑ : A v ?)

(let (LM, y) = M ;N) = let(LM, y) = ?× ?

⇝

M ;N+

(let (x, LM) = M ;N) = let(x, LM) = ?× ?

⇝

M ;N+

(let (LM, LM) = M ;N) = let(LM, LM) = ?× ?

⇝

M ;N+

(λLM : A.M)+ = λLM : A.hide · ⊆ Γo;M
+ (where M : A; Γo)

(M N)+ = (? → ?

⇝

M)(N :: dom(A))+ (where M : A)

(packν (LM ∼= A,M))+ = packν(LM ∼= A, hide · ⊆ Γo,M
+) (where M : B; Γo)

(unpack (LM, x) = M ;N)+ = unpack(LM, x) = ∃νX ′.?

⇝

M ; hide ΓN|X′ ⊆ ΓN ;N+ (X ′ /∈ Γ,Γo)

(unpack (X, LM) = M ;N)+ = unpack(X, LM) = ∃νX.?

⇝

M ; hide ΓN|X ⊆ ΓN ;N+

(unpack(LM, LM) = M ;N)+ = unpack(LM, LM) = ∃νX ′.?

⇝

M ; hide ΓN|X′ ⊆ ΓN ;N+ (X ′ /∈ Γ,Γo)

ΛνLM.M+ = ΛνLM.hide · ⊆ Γo;M
+

M{LM ∼= B}+ = (∀νX ′.?

⇝

M){LM ∼= B} (X ′ /∈ Γ,Γo)

G

⇝

M = 〈tagG(G)〉 ↞ M+ (when M : ?)

G

⇝

M = M+ (otherwise)

hide Γs ⊆ (Γb, X ∼= A);M = hide Γs ⊆ Γb; hideX ∼= A;M (X /∈ Γs)

hide Γs ⊆ (Γb, X);M = hide Γs ⊆ Γb; hide X ∼= ?;M (X /∈ Γs)

hide Γs ⊆ (Γb, x : A);M = hide Γs ⊆ Γb; let x = LM;M (x /∈ Γs)

hide (Γs, X ∼= A) ⊆ Γb;M = hide Γs ⊆ Γb; let x
′ = (ΛνX.true){X ∼= A};M

(X /∈ Γb and x′ /∈ Γ,Γo)

Fig. 17 Elaboration from PolyGνH to PolyCνH

type-check and run programs with holes. Hazel is

based on two core calculi, Hazelnut [8] and Hazel-

nut Live [7]. Hazelnut defines edit actions that au-

tomatically insert holes and ensure every editor

state has static meaning. Hazelnut Live provides

dynamic semantics to those programs to inform

programmers how their (incomplete) program will

work. As future work, we may also consider edit ac-

tions for our polymorphic gradual language, after

which we may be able to extend Hazel with para-

metric polymorphism. The biggest challenge would

be how to determine the environments around non-

empty holes, which at preset are just assumed to

be given like oracles.
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Finals F ::= V | I
Indets I ::= LM | LF M | 〈G ⇍ ? ⇐ H〉F

| is(G)?F where F 6= injHF

| λLM : A. M | ΛνLM. M | M{LM ∼= A}
| packν(LM ∼= A,M) | unpack(LM, LM) = M ;N

| unpack(X, LM) = M ;N | unpack(LM, x) = M ;N

| sealLMM | unsealLMM | is(LM)?M
| let LM = M ;N | let (LM, LM) = M ;N

| let (x, LM) = M ;N | let (LM, y) = M ;N

| sealαI | (I, F ) | (V, I) | injGI
| if I then M else M

| unsealαI where I 6= sealαM

| I F where I 6= 〈A⊑
1 → A⊑

2 〉 l M

| I {X ∼= A} where I 6= 〈∀νX.A⊑〉 l M

| unpack(X,x) = I;M

| let(x, x) = I;M where I 6= (M,M)

| 〈A⊑
1 → A⊑

2 〉 l I | 〈∀νX.A⊑〉 l I | 〈∃νX.A⊑〉 l I

| 〈A⊑
1 ×A⊑

2 〉 l I where I 6= (M,M)

| 〈tagG(A⊑)〉 ↞ I where I 6= injG′M

| is(G)? I where I 6= injG′M

Fig. 18 Final Forms of PolyCνH

Evaluation Context

E + ::= LEM | 〈G ⇍ ? ⇐ H〉E
Dynamic Semantics

E[〈tagG(A⊑)〉 ↞ injH F ] 7→ E[〈A⊑〉 ↞ 〈G ⇍ ? ⇐ H〉F ]

Fig. 19 Dynamic Semantics of PolyCνH
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