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Graded Algebraic Theories

Satoshi Kura

We provide graded extensions of algebraic theories and Lawvere theories that correspond to graded mon-

ads. We prove that graded algebraic theories, graded Lawvere theories, and finitary graded monads are

equivalent via equivalence of categories, which extends the equivalence for monads. We also give sums and

tensor products of graded algebraic theories to combine computational effects as an example of importing

techniques based on algebraic theories to graded monads.

1 Introduction

In the field of denotational semantics of program-

ming languages, monads have been used to ex-

press computational effects since Moggi’s seminal

work [18]. They have many applications from both

theoretical and practical points of view.

Monads correspond to algebraic theories [5]. This

correspondence gives natural presentations of many

kinds of computational effects by operations and

equations [21], which is the basis of algebraic ef-

fect [20]. The algebraic perspective of monads

also provides ways of combining [9], reasoning

about [22], and handling computational effects [23].

Graded monads [27] are a refinement of mon-

ads and defined as a monad-like structure indexed

by a monoidal category (or a preordered monoid).

The unit and multiplication of graded monads are

required to respect the monoidal structure. This

structure enables graded monads to express some

kind of “abstraction” of effectful computations. For

example, graded monads are used to give denota-

tional semantics of effect systems [12], which are

type systems designed to estimate scopes of com-

putational effects caused by programs.
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f ∈ Σn,m ti ∈ TΣ
m′(X) for each i ∈ {1, . . . , n}

f(t1, . . . , tn) ∈ TΣ
m⊗m′(X)

Fig. 1 A rule of term formation.

This paper provides a graded extension of alge-

braic theories that corresponds to monads graded

by small strict monoidal categories. This general-

izes N-graded theories in [17]. The main ideas of

this extension are the following. First, we assign to

each operation a grade, i.e., an object in a monoidal

category that represents effects. Second, our exten-

sion provides a mechanism (Fig. 1) to keep track of

effects in the same way as graded monads. That is,

if an operation f with grade m is applied to terms

with grade m′, then the grade of the whole term is

the product m ⊗ m′.

For example, graded algebraic theories enable

us to estimate (an overapproximation of) the set

of memory locations computations may access.

The side-effects theory [21] is given by operations

lookupl and updatel,v for each location l ∈ L

and value v ∈ V together with several equations,

and each term represents a computation with side-

effects. Since lookupl and updatel,v only read from

or write to the location l, we assign {l} ∈ 2L as the

grade of the operations in the graded version of the

side-effects theory where 2L is the join-semilattice

of subsets of locations L. The grade of a term is (an

overapproximation of) the set of memory locations

the computations may access thanks to the rule in

Fig 1.



We also provide graded Lawvere theories that cor-

respond to graded algebraic theories. The intuition

of a Lawvere theory is a category whose arrows are

terms of an algebraic theory. We use this intuition

to define graded Lawvere theories. In graded alge-

braic theories, each term has a grade, and substi-

tution of terms must respect the monoidal struc-

ture of grades. To characterize this structure of

“graded” terms, we consider Lawvere theories en-

riched in a presheaf category.

Like algebraic theories brought many concepts

and techniques to the semantics of computational

effects, we expect that the proposed graded alge-

braic theories will do the same for effect systems.

We look into one example out of such possibilities:

combining graded algebraic theories.

The main contributions of this paper are summa-

rized as follows.

• We generalize (N-)graded algebraic theories

of [17] to M-graded algebraic theories and also

provide M-graded Lawvere theories where M

is a small strict monoidal category. We show

that there exist translations between these no-

tions and finitary graded monads, which yield

equivalences of categories.

• We extend sums and tensor products of alge-

braic theories [9] to graded algebraic theories.

We define sums in the category of M-graded

algebraic theories, and tensor products as an

M×M′-graded algebraic theory made from an

M-graded and an M′-graded algebraic theory.

We also show a few properties and examples of

these constructions.

2 Preliminaries

2. 1 Enriched Category Theory

We review enriched category theory and intro-

duce notations. See [13] for details.

Let V0 = (V0,⊗, I) be a (not necessarily sym-

metric) monoidal category. V0 is right closed if

(−) ⊗ X : V0 → V0 has a right adjoint [X,−]

for each X ∈ obV0. Similarly, V0 is left closed

if X ⊗ (−) has a right adjoint JX,−K for each

X ∈ obV0. V0 is biclosed if V0 is left and right

closed.

LetV0
t denote the monoidal category (V0,⊗t, I)

where ⊗t is defined by X ⊗t Y := Y ⊗ X. Note

that V0
t is right closed if and only if V0 is left

closed.

We define V0-category, V0-functor and V0-

natural transformation as in [13].

If V0 is right closed, then V0 itself enriches

to a V0-category V with hom-object given by

V(X,Y ) := [X,Y ]. We use the subscript (−)0 to

distinguish the enriched category V from its under-

lying category V0.

Assume that V0 is biclosed and let A be a

V0-category. The opposite category Aop is the

V0
t-category defined by Aop(X,Y ) = A(Y,X).

For any X ∈ obA, A(X,−) : A → V0 is

a V0-functor where A(X,−)Y,Z : A(Y,Z) →
[A(X,Y ),A(X,Z)] is defined by transposing the

composition law ◦ of A. A V0
t-functor A(−, X) is

defined by Aop(X,−) : Aop → V0
t.

Let A be a V0-category. For each X ∈ V0

and C ∈ A, a tensor X ⊗ C is an object in

A together with a counit morphism ν : X →
A(C,X ⊗ C) such that a V0-natural transforma-

tion A(X ⊗ C,−) → JX,A(C,−)K obtained by

transposing (◦) ◦ (A(X ⊗ C,B) ⊗ ν) is isomor-

phic where ◦ is the composition in the V0-category

A. A cotensor X ⋔ C is a tensor in Aop. For exam-

ple, if V0 = Set, then tensors X ⊗ C are copowers

X · C, and cotensors X ⋔ C are powers CX .

A V0-functor F : A → B is said to preserve a

tensor X ⊗ C if FC,X⊗C ◦ ν : X → B(FC, F (X ⊗
C)) is again a counit morphism. F preserves coten-

sors if F op preserves tensors.

Let Φ be a collection of objects in V0. A V0-

functor F : A → B is said to preserve Φ-(co)tensors

if F preserves (co)tensors of the form X ⊗ C

(X ⋔ C) for each X ∈ Φ and C ∈ obA.

2. 2 Graded Monads

We review the notion of graded monad in [12] [7],

and then define the category GMndM of finitary

M-graded monads. Throughout this section, we fix

a small strict monoidal category M = (M,⊗, I).

Definition 1 (graded monads). An M-graded

monad on C is a lax monoidal functor M → [C,C]

where [C,C] is a monoidal category with compo-

sition as multiplication. That is, an M-graded

monad is a tuple (∗, η, µ) of a functor ∗ : M×C →
C and natural transformations ηX : X → I ∗X and

µm1,m2,X : m1 ∗ (m2 ∗ X) → (m1 ⊗ m2) ∗ X such

that the following diagrams commute.



m ∗X I ∗ (m ∗X)

m ∗ (I ∗X) m ∗X

η

m∗η µ

µ

m1∗(m2∗(m3∗X)) m1∗((m2⊗m3)∗X)

(m1⊗m2)∗(m3∗X) (m1⊗m2⊗m3)∗X

m1∗µ

µ µ

µ

A morphism of M-graded monad is a monoidal nat-

ural transformation α : (∗, η, µ) → (∗′, η′, µ′), i.e. a

natural transformation α : ∗ → ∗′ that is compati-

ble with η and µ.

An intuition of graded monads is a refinement of

monads: m ∗ X is a computation whose scope of

effect is indicated by m and whose result is in X.

The monoidal category M defines the granularity

of the refinement, and a 1-graded monad is just

an ordinary monad. Note that we do not assume

that M is symmetric because some of graded mon-

ads in [12] require M to be nonsymmetric. We also

deal with such a nonsymmetric case in Example 26.

A finitary functor is a functor that preserves fil-

tered colimits. In this paper, we focus on finitary

graded monads on Set.

Definition 2. A finitary M-graded monad on

Set is a lax monoidal functor M → [Set,Set]f

where [Set,Set]f denotes the full subcategory of

[Set,Set] on finitary functors. Let GMndM de-

note the category of finitary M-graded monads and

monoidal natural transformations between them.

A morphism in GMndM is determined by the

restriction to ℵ0 ⊆ Set where ℵ0 is the full subcat-

egory of Set on natural numbers.

Lemma 3. Let T = (∗, η, µ) and T ′ = (∗′, η′, µ′)

be finitary M-graded monads. There exists one-to-

one correspondence between the following.

1. Morphisms α : T → T ′.

2. Natural transformations β : ∗ ◦ (M × i) →
∗′ ◦ (M × i) (where i : ℵ0 → Set is the inclu-

sion functor) such that the following diagrams

commute for each n, n′ ∈ ℵ0, m1,m2 ∈ M and

f : n → m2 ∗ n′.

n I ∗ n

I ∗′ n

ηn

η′
n

β

m1 ∗ n m1 ∗′ n

m1 ∗′ (m2 ∗ n′)

m1 ∗ (m2 ∗ n′) m1 ∗′ (m2 ∗′ n′)

(m1 ⊗ m2) ∗ n′ (m1 ⊗ m2) ∗′ n′

β

m1∗f

m1∗′f

m1∗′β

µ µ′

β

Proof. By the equivalence [Set,Set]f ' [ℵ0,Set]

induced by restriction and the left Kan extension

along the inclusion i : ℵ0 → Set.

2. 3 Day Convolution

We describe a monoidal biclosed structure on

the (covariant) presheaf category [M,Set]0 where

M = (M,⊗, I) is a small monoidal category [3].

Here, we use the subscript (−)0 to indicate that

[M,Set]0 is an ordinary (not enriched) category

since we also use the enriched version [M,Set]

later.

The external tensor product F ⊠ G : M × M →
Set is defined by (F ⊠G)(m1,m2) = Fm1 ×Gm2

for any F,G : M → Set.

Definition 4. Let F,G : M → Set be functors.

The Day tensor product F ⊗̌ G : M → Set is the

left Kan extension Lan⊗(F⊠G) of the external ten-

sor product F ⊠G : M×M → Set along the tensor

product ⊗ : M×M → M.

Note that a natural transformation θ : F ⊗̌
G → H is equivalent to a natural transformation

θm1,m2 : Fm1 × Gm2 → H(m1 ⊗ m2) by the uni-

versal property.

The Day convolution induces a monoidal biclosed

structure in [M,Set]0 [3].

Proposition 5. The Day tensor product makes

([M,Set]0, ⊗̌, y(I)) a monoidal biclosed category

where y : Mop → [M,Set]0 is the Yoneda embed-

ding y(m) := M(m,−).

The left and the right closed structure are

given by JF,GKm = [M,Set]0(F,G(m⊗−)) and

[F,G]m = [M,Set]0(F,G(−⊗m)) for each m ∈
M, respectively.

Note that since we do not assume M to be

symmetric, neither is [M,Set]0. Note also that

the twisting and the above construction commute:



there is an isomorphism [M,Set]0
t ∼= [Mt,Set]0 of

monoidal categories.

2. 4 Categories Enriched in a Presheaf

Category

We rephrase the definitions of [M,Set]0-enriched

category, functor and natural transformation in el-

ementary terms. An [M,Set]0-category is, so to

say, an “M-graded” category: each morphism has

a grade m ∈ obM and the grade of the compos-

ite of two morphisms with grades m and m′ is the

product m ⊗ m′ of the grades of each morphism.

Likewise, [M,Set]0-functors and [M,Set]0-natural

transformations can be also understood as an “M-

graded” version of ordinary functors and natural

transformations. Specifically, the following lemma

holds [2].

Lemma 6. There is a one-to-one correspondence

between (1) an [M,Set]0-category C and (2) the

following data satisfying the following conditions.

• A class of objects obC.

• For each X,Y ∈ obC, a hom objects

C(X,Y ) ∈ [M,Set]0.

• For each X ∈ obC, an element 1X ∈
C(X,X)I.

• For each X,Y, Z ∈ obC, a family of mor-

phisms
(
◦m1,m2 : C(Y,Z)m1 × C(X,Y )m2 →

C(X,Z)(m1 ⊗ m2)
)
m1,m2∈M

which is natural

in m1 and m2. The subscripts m1 and m2 are

often omitted.

These data must satisfy the identity law 1Y ◦ f =

f = f ◦ 1X for each f ∈ C(X,Y )m and the asso-

ciativity (h ◦ g) ◦ f = h ◦ (g ◦ f) for each f ∈
C(X,Y )m1, g ∈ C(Y,Z)m2 and h ∈ C(Z,W )m3.

Proof. The identity 1X : y(I) → C(X,X) in C cor-

responds to 1X ∈ C(X,X)I by the Yoneda lemma,

and the composition ◦ : C(Y,Z) ⊗̌ C(X,Y ) →
C(X,Z) in C corresponds to the natural trans-

formation ◦m1,m2 : C(Y,Z)m1 × C(X,Y )m2 →
C(X,Z)(m1 ⊗ m2) by the universal property of the

Day convolution. The rest of the proof is easy.

An [M,Set]0-functor F : C → D consists of

a mapping X 7→ FX and a natural transforma-

tion FX,Y : C(X,Y ) → D(FX,FY ) (for each

X,Y ) that preserves identities and compositions

of morphisms. An [M,Set]0-natural transforma-

tion α : F → G is a family of elements
(
αX ∈

D(FX,GX)I
)
X∈ob(C)

that satisfies αY ◦ Ff =

Gf ◦ αX for each f ∈ C(X,Y )m. Vertical and

horizontal compositions of [M,Set]0-natural trans-

formations are defined as expected.

We introduce a useful construction of [M,Set]0
t-

categories. Given an M-graded monad (in other

words, a lax left M-action) on C, we can define an

[M,Set]0
t-enriched category as follows.

Definition 7. Let T = (∗, η, µ) be an M-graded

monad on C. An [M,Set]0
t-category C̃T is defined

by obC̃T := obC and C̃T (X,Y )m := C(X,m ∗ Y ).

The identity morphisms are the unit morphisms

ηX ∈ C̃T (X,X)I, and the composite of f ∈
C̃T (Y,Z)m and g ∈ C̃T (X,Y )m′ is µ ◦ (m∗g) ◦ f .

The definition of C̃T is similar to the definition

of the Kleisli categories for ordinary monads. Ac-

tually, C̃T can be constructed via the Kleisli cate-

gory CT for the graded monad T presented in [7]

(although CT itself is not enriched). This can be

observed by CT ((I,X), (m,Y )) ∼= C̃T (X,Y )m.

3 Graded Algebraic Theories

We explain a framework of universal algebra

for graded monads, which is a natural extension

of [27] [17]. The key idea of this framework is that

each term is associated with not only an arity but

also a “grade”, which is represented by an object in

a monoidal category M. We also add coercion con-

struct for terms that changes the grade of terms

along a morphism of the monoidal category M.

Then, a mapping that takes m ∈ M and a set of

variables X and returns the set of terms with grade

m (modulo the equational axioms) yields a graded

monad.

We fix a small strict monoidal category M =

(M,⊗, I) throughout this section. We sometimes

identify n ∈ N with {1, . . . , n}, or {x1, . . . , xn} if it

is used as a set of variables.

3. 1 Equational Logic

A signature is a family of sets of symbols Σ =

(Σn,m)n∈N,m∈M. An element f ∈ Σn,m is called

an operation with arity n and grade m. We define

a sufficient structure to interpret operations in a

category C as follows.

Definition 8. M-model condition is defined by the

following conditions on a tuple (C, (⊛, η⊛, µ⊛)).

• C is a category with finite power.

• (⊛, η⊛, µ⊛) is a strong Mt-action (i.e. an Mt-



graded monad whose unit and multiplication

are invertible).

• For each m ∈ M, m ⊛ (−) preserves finite

powers: m ⊛ cn ∼= (m ⊛ c)n.

Example 9. If A is a category with finite pow-

ers, then the functor category [M,A] has strong

Mt-action defined by m ⊛ F := F (m ⊗ (−)) and

satisfies M-model condition. Especially, [M,Set]0

satisfies M-model condition.

A model A = (A, | · |A) of Σ in a category C

satisfying M-model condition consists of an object

A ∈ C and an interpretation |f |A : An → m ⊛ A

for each f ∈ Σn,m. A homomorphism α : A → B

between two models A,B is a morphism α : A → B

in C such that (m ⊛ α) ◦ |f |A = |f |B ◦ αn for each

f ∈ Σn,m.

Definition 10. Let X be a set of variables. The

set of (M-graded) Σ-terms TΣ
m(X) for each m ∈ M

is defined inductively as follows.

x ∈ X

x ∈ TΣ
I (X)

t ∈ TΣ
m(X) w : m → m′

cw(t) ∈ TΣ
m′ (X)

f ∈ Σn,m ∀i ∈ {1, . . . , n}, ti ∈ TΣ
m′ (X)

f(t1, . . . , tn) ∈ TΣ
m⊗m′ (X)

That is, we build Σ-terms from variables by ap-

plying operations in Σ and coercions cw while keep-

ing track of the grade of terms. When applying

operations, we sometimes write f(λi ∈ n.ti) or

f(λi.ti) instead of f(t1, . . . , tn).

Definition 11. Let A be a model of a signature Σ.

For each m ∈ M and s ∈ TΣ
m(n), the interpretation

|s|A : An → m ⊛ A is defined as follows.

• For any variable xi, |xi|A = η⊛ ◦ πi where

πi : A
n → A is the i-th projection.

• For each w : m′ → m and s ∈
TΣ
m′({x1, . . . , xn}), |cw(s)|A = (w ⊛ A) ◦ |s|A.

• If f ∈ Σk,m′ and ti ∈ TΣ
m′′({x1, . . . , xn}) for

each i ∈ {1, . . . , k}, then |f(t1, . . . , tk)|A is de-

fined by the following composite.

An

(m′′⊛A)k

m′′⊛Ak

m′′⊛(m′⊛A)

(m′⊗m′′)⊛A

⟨|t1|,...,|tk|⟩

∼=

m′′⊛|f |

µ

When we interpret a term t ∈ TΣ
m(X), we need

to pick a finite set n such that fv(t) ⊆ n ⊆ X

where fv(t) is the set of free variables in t, but

the choice of the finite set does not matter when

we consider only equality of interpretations by the

following fact. If σ : n → n′ is a renaming of vari-

ables and σ : TΣ
m(n) → TΣ

m(n′) is a mapping in-

duced by the renaming σ, then for each t ∈ TΣ
m(n),

|σ(t)|A = |t|A ◦ Aσ, which implies that equality of

the interpretations of two terms s, t is preserved by

renaming: |s| = |t| implies |σ(s)| = |σ(s)|.
An equational axiom is a family of sets E =

(Em)m∈M where Em is a set of pairs of terms in

TΣ
m(X). We sometimes identify E with its union⋃
m∈M Em. A presentation of an M-graded alge-

braic theory (or an M-graded algebraic theory) is a

pair T = (Σ, E) of a signature and an equational

axiom. A model A of (Σ, E) is a model of Σ that

satisfies |s|A = |t|A for each (s = t) ∈ E. Let

ModT (C) denote the category of models of T in C

and homomorphisms between them.

To obtain a graded monad on Set from T , we

need a strict left action of M on ModT ([M,Set]0)

and an adjunction between ModT ([M,Set]0) and

Set. The former is defined by the following, while

the latter is described in §3. 2.
Lemma 12. Let C be a category satisfying M1 ×
M2-model condition. If T is an M1-graded alge-

braic theory, then C satisfies M1-model condition

and ModT (C) satisfies M2-model condition.

Proof. An Mt
1-action on C is obtained by the

composition of Mt
1 × Mt

2-action and the strong

monoidal functor Mt
1 → Mt

1 × Mt
2 defined by

m 7→ (m, I). Finite powers and an Mt
2-action for

ModT (C) are induced by those for C.

Corollary 13. ModT ([M,Set]0) has anM-action,

which is given by the precomposition of m ⊗ (−)

like the M-action of Example 9.

Proof. [M,Set]0 has Mt × M-action defined by

(m1,m2) ∗ F = F (m1 ⊗ (−) ⊗ m2). Thus,

M-action for ModT ([M,Set]0) is obtained by

Lemma 12.

Substitution s[t1/x1, . . . , tk/xk] for M-graded Σ-

terms can be defined as usual, but we have to take

care of grades: given s ∈ TΣ
m(k) and t1, . . . , tk ∈

TΣ
m′(n), the substitution s[t1/x1, . . . , tk/xk] is de-

fined as a term in TΣ
m⊗m′(n).

We obtain an equational logic for graded theo-

ries by adding some additional rules to the usual

equational logic.

Definition 14. The entailment relation T ` s = t



(where s, t ∈ Tm(X)) for an M-graded theory T is

defined by adding the following rules to the stan-

dard rules i.e. reflexivity, symmetry, transitivity,

congruence, substitution and axiom in E (see e.g.

[26] for the standard rules of equational logic).

s, t ∈ TΣ
m(X) T ⊢ s = t w : m → m′

T ⊢ cw(s) = cw(t)

t ∈ TΣ
m(X)

T ⊢ c1m (t) = t

t ∈ TΣ
m(X) w : m → m′ w′ : m′ → m′′

T ⊢ cw′ (cw(t)) = cw′◦w(t)

f ∈ Σn,m ti ∈ TΣ
m′ (X) for each i w : m′ → m′′

T ⊢ f(cw(t1), . . . , cw(tn)) = cm⊗w(f(t1, . . . , tn))

Definition 15. Given a model A of T , we de-

note A ⊩ s = t if s, t ∈ TΣ
m(n) (for some n) and

|s|A = |t|A. If C is a category satisfying M-model

condition, we denote T ,C ⊩ s = t if A ⊩ s = t for

any model A of T in C.

It is easy to verify that the equational logic in

Definition 14 is sound.

Theorem 16 (soundness). T ` s = t implies

T ,C ⊩ s = t.

3. 2 Free Models

We describe a construction of a free model

F T X ∈ ModT ([M,Set]0) of a graded theory T
generated by a set X, which induces an adjunction

between ModT ([M,Set]0) and Set. This adjunc-

tion, together with the M-action of Corollary 13,

gives a graded monad as described in [7].

Definition 17 (free model F T X). Let T = (Σ, E)

be an M-graded theory. We define a functor

F T X : M → Set by F T Xm := TΣ
m(X)/∼m

for each m ∈ M and any X ∈ Set where

s ∼m t is the equivalence relation defined by

T ` s = t and F T Xw([t]m) := [cw(t)]m′ for any

w : m → m′ where [t]m is the equivalence class

of t ∈ TΣ
m(X). For each f ∈ Σn,m′ , let |f |F

T X :

(F T X)n → m′ ⊛ F T X be a mapping defined

by |f |F
T X

m ([t1]m, . . . , [tn]m) = [f(t1, . . . , tn)]m′⊗m

for each m ∈ M. We define a model of T by

F T X = (F T X, | · |F
T X).

The model F T X, together with the mapping

ηX : X → F T XI defined by x 7→ [x]I , has the

following universal property as a free model gener-

ated by X.

Lemma 18. For any model A in [M,Set]0 and

any mapping v : X → AI, there exists a unique

homomorphism v : F T X → A satisfying vI ◦ ηX =

v.

Corollary 19. Let U : ModT ([M,Set]0) → Set

be the forgetful functor defined by the evaluation

at I, that is, UA = AI and Uα = αI . The free

model functor F T : Set → ModT ([M,Set]0) is a

left adjoint of U .

By considering the interpretation in the free

model, we obtain the following completeness the-

orem.

Theorem 20 (completeness). T , [M,Set]0 ⊩ s =

t implies T ` s = t.

Recall that ModT ([M,Set]0) has a left action

(Corollary 13). Therefore the above adjunction in-

duces an M-graded monad as described in [7].

The relationship between ModT ([M,Set]0) and

the Eilenberg–Moore construction is as follows.

In [7], the Eilenberg–Moore category CT for any

graded monad T on C is introduced together with

a left action ⊛ : M ×CT → CT. If C = Set and

T is the graded monad obtained from an M-graded

theory T , then the Eilenberg–Moore category SetT

is essentially the same as ModT ([M,Set]0).

Theorem 21. The comparison functor K :

ModT ([M,Set]0) → SetT (see [7] for the defini-

tion) where T is an M-graded theory and T is the

graded monad induced from the graded theory T is

isomorphic. Moreover, K preserves the M-action:

⊛ ◦ (M×K) = K ◦ ⊛.

We define the category GSM of graded algebraic

theories as follows.

Definition 22. Let T = (Σ, E) and T ′ = (Σ′, E′).

A morphism α : T → T ′ between graded algebraic

theories is a family of mappings αn,m : Σn,m →
F T ′

nm from operations in Σ to Σ′-terms such that

the equations in E are preserved by α, i.e. for each

s, t ∈ TΣ
m(X), (s, t) ∈ E implies |s|(F

T ′
X,α) =

|t|(F
T ′

X,α) where (F T ′
X,α) is a model of T in-

duced by α.

Definition 23. Given a morphism α : T → T ′, let

Fα : F T → F T ′
be a natural transformation de-

fined by Fα([t]) = |t|(F
T ′

X,α) for each t ∈ TΣ
m(X).

Definition 24. We write GSM for the category

of graded algebraic theories and morphisms be-

tween them. The identity morphisms are defined

by 1T (f) = [f(x1, . . . , xn)] for each f ∈ Σn,m. The

composition of α : T → T ′ and β : T ′ → T ′′ is

defined by β ◦ α(f) = F β(α(f)).



3. 3 Examples

Example 25 (graded modules). LetM = (N,+, 0)

where N is regarded as a discrete category. Given

a graded ring A =
⊕

n∈N An, let Σ be a set of op-

erations which consists of the binary addition op-

eration + (arity: 2, grade: 0), the unary inverse

operation − (arity: 1, grade: 0), the identity ele-

ment (nullary operation) 0 (arity: 0, grade: 0) and

the unary scalar multiplication operation a · (−)

(arity: 1, grade: n) for each a ∈ An. Let E be the

equational axiom for modules.

A model (F, | · |) of the M-graded theory (Σ, E)

in [M,Set]0 consists of a set Fn for each n ∈ N
and functions |+|n : (Fn)

2 → Fn, |−|n : Fn → Fn,

|0|n ∈ Fn and |a · (−)|n : Fn → Fm+n for each

n ∈ N and each a ∈ Am, and these interpretations

satisfy E. Therefore models of (Σ, E) in [M,Set]0

correspond one-to-one with graded modules.

Example 26 (graded exception monad [12, Exam-

ple 3.4]). We give an algebraic presentation of the

graded exception monad.

Let M and (∗, η, µ) be a preordered monoid and

the graded monad defined as follows. Let P+(X)

denote the set of nonempty subsets of X. Let

Ex be a set of exceptions and M = ((P+(Ex ∪
{Ok}),⊆), I,⊗) be a preordered monoid where I =

{Ok} and the multiplication ⊗ is defined by m ⊗
m′ = (m \ {Ok}) ∪m′ if Ok ∈ m and m ⊗ m′ = m

otherwise (note that this is not commutative). The

graded exception monad (∗, η, µ) is the M-graded

monad given as follows.

m ∗X = {Er(e) | e ∈ m \ {Ok}}
∪ {Ok(x) | x ∈ X ∧Ok ∈ m}

ηX(x) = Ok(x)

µm1,m2,X(Er(e)) = Er(e)

µm1,m2,X(Ok(x)) = x

The M-graded theory T ex for the graded excep-

tion monad is defined by (Σex, ∅) where Σex is the

set that consists of an operation raisee (arity: 0,

grade: {e}) for each e ∈ Ex.

The graded monad induced by T ex coincides with

the graded exception monad. Indeed, the free

model functor F T ex

for T ex is given by F T ex

Xm =

m ∗ X. Here, the operations raisee are interpreted

by e ∈ Ex.

|raisee|F
T ex

X
m = Er(e) ∈ F T ex

X({e} ⊗ m)

Example 27 (extending an ordinary monad to an

M-graded monad). We consider the problem of ex-

tending an M′-graded theory to an M-graded the-

ory along a lax monoidal functor of type M′ → M,

but here we restrict ourselves to the case of M′ = 1

and the strict monoidal functor of type 1 → M.

Let M = (M, I,⊗) be an arbitrary small strict

monoidal category. Let T = (Σ, E) be a (1-graded)

theory and (T, ηT , µT ) be the corresponding ordi-

nary monad. Let T M = (ΣM, EM) be the M-

graded theory obtained when we regard each op-

eration in T as an operation with grade I ∈ M,

that is, ΣM
n,m := Σn if m = I and ΣM

n,m := ∅ other-

wise, and EM := E.

The free model functor for T M is F T M

X =

F T (M(I,−) × X) where F T : Set → ModT (Set)

is the free model functor for T as a 1-graded theory,

and the interpretation of an operation f ∈ Σn in

F T M

X is defined by the interpretation in the free

models of T .

|f |F
T M

X
m = |f |F

T (M(I,m)×X)

:
(
F T (M(I,m)×X)

)n → F T (M(I,m)×X)

Intuitively, this can be understood as follows.

Since all the operations are of grade I, coercions

cw in a term can be moved to the innermost

places where variables occur by repeatedly applying

cw(f(t1, . . . , tn)) = f(cw(t1), . . . , cw(tn)) (see Def-

inition 14). Therefore, we can consider terms of

T M as terms of T whose variables are of the form

cw(x).

An M-graded monad (∗, η, µ) obtained from T M

is as follows.

m ∗X = T (M(I,m)×X) η = ηT (1I ,−)

µ = T (⊗×X) ◦ µT ◦ T st

Here, ⊗ : M(I,m1)×M(I,m2) → M(I,m1 ⊗ m2)

is induced by ⊗: M × M → M and stX,Y :

X × TY → T (X × Y ) is the strength for T .

4 Graded Lawvere Theories

We present a categorical formulation of graded

algebraic theories of §3 in a similar fashion to ordi-

nary Lawvere theories.

For ordinary (single-sorted) finitary algebraic

theories, a Lawvere theory is defined as a small cat-

egory L with finite products together with a strict

finite-product preserving identity-on-objects func-



tor J : ℵop
0 → L where ℵ0 is the full subcategory of

Set on natural numbers. Intuitively, morphisms in

the Lawvere theory L are terms of the correspond-

ing algebraic theory, and objects of L, which are

exactly the objects in obℵ0, are arities.

According to the above intuition, it is expected

that a graded Lawvere theory is also defined as a

category whose objects are natural numbers and

morphisms are graded terms. However, since terms

in a graded algebraic theory are stratified by a

monoidal category M, mere sets are insufficient

to express hom-objects of graded Lawvere theories.

Instead, we take hom-objects from the functor cat-

egory [M,Set]0 and define graded Lawvere theo-

ries using [M,Set]0-categories where [M,Set]0 is

equipped with the Day convolution monoidal struc-

ture. Specifically, ℵ0 (in ordinary Lawvere theories)

is replaced with an [M,Set]0-category NM, L with

an [M,Set]0-category, and “finite products” with

“Nop
M-cotensors”.

So, we first provide an enriched category NM

that we use as arities. Since we do not assume

that M is symmetric, NM is defined to be an

[M,Set]0
t-category so that the opposite category

Nop
M is an [M,Set]0-category. Let [M,Set]t be an

[M,Set]0
t-category induced by the closed structure

of [M,Set]0
t. That is, hom-objects of [M,Set]t are

given by [M,Set]t(G,H)m = [M,Set]0(G,H(− ⊗
m)).

Definition 28. An [M,Set]0
t-category NM is

defined by the full sub-[M,Set]0
t-category of

[M,Set]t whose set of objects is given by obNM =

{n · y(I) | n ∈ N} ⊆ ob[M,Set]t where N is the

set of natural numbers and n · y(I) is the n-fold

coproduct of y(I). We sometimes identify obNM

with N via the mapping n 7→ n := n · y(I).
Lemma 29. The [M,Set]0-categoryNop

M hasNop
M-

cotensors, which are given by n ⋔ n′ = n · n′ for

each n and n′.

Proof. A cotensor (n · y(I)) ⋔ (n′ · y(I)) is a tensor

(n · y(I)) ⊗t (n′ · y(I)) in [M,Set]t. Since ⊗t is

biclosed, ⊗t preserves colimits in both arguments.

Therefore, (n·y(I)) ⊗t (n′ ·y(I)) ∼= (n·n′)·y(I).
Nop

M-cotensors (i.e. n · y(I) ⋔ C) behave like an

enriched counterpart of finite powers (−)n. We

show that Nop
M-cotensors in a general [M,Set]0-

category A are characterized by projections sat-

isfying a universal property. Given a unit mor-

phism ν : n → A(n ⋔ C,C) of the cotensor n ⋔ C,

an [M,Set]0-natural transformation ν : A(B,n ⋔
C) → [n,A(B,C)] is given by f 7→ (x 7→ ν(x) ◦ f).

The condition that ν is isomorphic can be rephrased

as follows.

Lemma 30. An [M,Set]0-category A has Nop
M-

cotensors if and only if for any n ∈ N and C ∈
obA, there exist an object n ⋔ C ∈ obA and

(π1, . . . , πn) ∈ (A(n ⋔ C,C)I)n such that the fol-

lowing condition holds: for each m, the function

f 7→ (π1 ◦ f, . . . , πn ◦ f) of type A(B,n ⋔ C)m →
(A(B,C)m)n is bijective.

An [M,Set]0-functor F : A → B pre-

serves Nop
M-cotensors if and only if (Fn⋔C,C,I ◦

π1, . . . , Fn⋔C,C,I ◦ πn) ∈ (B(F (n ⋔ C), FC)I)n

satisfies the same condition for each n and C.

Proof. The essence of the proof is that the unit

morphism ν : n · y(I) → A(n ⋔ C,C)

corresponds to elements π1, . . . , πn ∈ A(n ⋔
C,C)I by [M,Set]0(n · y(I),A(n ⋔ C,C)) ∼=
[M,Set]0(y(I),A(n ⋔ C,C))n ∼=

(
A(n ⋔

C,C)I
)n

. The [M,Set]0-natural transformation

ν is isomorphic if and only if each component

νm : A(B,n ⋔ C)m → [n,A(B,C)]m of ν is iso-

morphic, which is moreover equivalent to the con-

dition that f 7→ (π1 ◦ f, . . . , πn ◦ f) : A(B,n ⋔
C)m → (A(B,C))n is isomorphic since we have

[n,A(B,C)]m ∼= (A(B,C)m)n.

The latter part of the lemma follows from the

former part.

If (π1, . . . , πn) ∈ (A(n ⋔ C,C)I)n satisfies

the condition in Lemma 30, we call the element

πi ∈ A(n ⋔ C,C)I the i-th projection of n ⋔ C.

Note that the choice of projections is not nec-

essarily unique. However, when we say that A

is an [M,Set]0-category with Nop
M-cotensors, we

implicitly assume that there are a chosen coten-

sor n ⋔ C and chosen projections (π1, . . . , πn) ∈
(A(n ⋔ C,C)I)n for each n ∈ obNop

M and C ∈ obA.

We also assume that 1 ⋔ X = X without loss of

generality. Given n-tuple (f1, . . . , fn) of elements

in A(B,C)m, we denote by 〈f1, . . . , fn〉 an ele-

ment in A(B,n ⋔ C)m obtained by the inverse

of f 7→ (π1 ◦ f, . . . , πn ◦ f) and call this a tupling.

Tuplings and projections for Nop
M-cotensors behave

like those for finite products.

The following proposition claims that Nop
M is a

free [M,Set]0-category with chosen Nop
M-cotensors

generated by one object.

Proposition 31. Let A be an [M,Set]0-category



with Nop
M-cotensors and C be an object in A.

Then there exists a unique Nop
M-cotensor preserv-

ing [M,Set]0-functor F : Nop
M → A such that

Fn = n ⋔ C and Fπi = πi.

We define M-graded Lawvere theories in a simi-

lar fashion to enriched Lawvere theories.

Definition 32. An M-graded Lawvere theory is a

tuple (L, J) where L is an [M,Set]0-category with

Nop
M-cotensors and J : Nop

M → L is an identity-on-

objects Nop
M-cotensor preserving [M,Set]0-functor.

A morphism F : (L, J) → (L′, J ′) between two

graded Lawvere theories is an [M,Set]0-functor

F : L → L′ such that FJ = J ′. We denote the cat-

egory of graded Lawvere theories and morphisms

between them by GLawM.

By Proposition 31, the existence of the above

J : Nop
M → L is equivalent to requiring that

obL = N and projections in L are chosen in some

way. So, we sometimes leave J implicit and just

write L ∈ GLawM for (L, J) ∈ GLawM.

Definition 33. A model of graded Lawvere theory

L in an [M,Set]0-category A with Nop
M-cotensor

is an Nop
M-cotensor preserving [M,Set]0-functor of

type L → A. A morphism α : F → G between

two models F,G of graded Lawvere theory L is an

[M,Set]0-natural transformation. Let Mod(L,A)

be the category of models of graded Lawvere theory

L in the [M,Set]0-category A.

In §3, we use a category C satisfying M-model

condition to define a model of graded algebraic the-

ory. Actually, M-model condition is sufficient to

give an [M,Set]0-category with Nop
M-cotensors.

Lemma 34. If C satisfies M-model condition,

then the [M,Set]0-category C̃T

op
defined in Defi-

nition 7 has Nop
M-cotensors.

Proof. For any X ∈ C̃T

op
and n, the cotensor

n ⋔ X is given by finite power Xn, and the i-th

projection is given by η⊛ ◦ πi ∈ C̃T

op
I where

πi : Xn → X is the i-th projection of the finite

power Xn. The rest of the proof is routine.

If we apply Lemma 34 to [M,Set]0 equipped

with the Mt-action in Example 9 (here denoted

by T ), then ˜([M,Set]0)T
op

coincides with [M,Set]

(i.e. the [M,Set]0-category obtained by the closed

structure of [M,Set]0).

5 Equivalence

We have shown three graded notions: graded al-

gebraic theories, graded Lawvere theories and fini-

tary graded monads, which give rise to categories

GSM, GLawM and GMndM, respectively. This

section is about the equivalence of these three no-

tions. We give only a sketch of the proof of the

equivalence, and the details are deferred to [14, Ap-

pendix A].

5. 1 Graded Algebraic Theories and Graded

Lawvere Theories

We prove that the category of graded algebraic

theories GSM and the category of graded Law-

vere theories GLawM are equivalent by showing

the existence of an adjoint equivalence Th ` U :

GLawM → GSM.

Let M be a small strict monoidal category and

T = (Σ, E) be an M-graded algebraic theory. We

defineThT (the object part ofTh) as anM-graded

Lawvere theory whose morphisms are terms of T
modulo equational axioms.

Definition 35. An [M,Set]0-category ThT is de-

fined by ob(ThT ) := N and (ThT )(n, n′)m :=

(F T nm)n
′
with composition defined by substitu-

tion.

It is easy to show that ThT has Nop
M-cotensors

(by Lemma 30). Therefore, Th is a mapping from

an object in GSM to an object in GLawM.

We define a functor U : GLawM → GSM by tak-

ing all the morphism f ∈ L(n, 1)m in L ∈ GLawM

as operations and all the equations that hold in L

as equational axioms.

Definition 36. A functor U : GLawM → GSM

is defined as follows.

• For each L ∈ obGLawM , UL = (Σ, E) where

Σn,m = L(n, 1)m, E = {(s, t) | |s|L = |t|L}
and | · |L : TΣ

m(n) → L(n, 1)m is an interpreta-

tion of terms defined in the same way as Defi-

nition 11.

• Given G : L → L′, let UG : UL → UL′ be a

functor defined by UG(f) = [G(f)(x1, . . . , xn)]

for each f ∈ L(n, 1)m.

Then, ThT has the following universal property

as a left adjoint of U .

Lemma 37. For each T , let ηT : T → UThT be a

family of functions ηT ,n,m : Σn,m → FUThT nm de-



fined by ηT ,n,m(f) = [[f(x1, . . . , xn)](x1, . . . , xn)].

For any α : T → UL, there exists a unique mor-

phism α : ThT → L such that α = Uα ◦ ηT .

Moreover, the unit and the counit of Th a U are

isomorphic. Therefore:

Theorem 38. Two categories GSM and GLawM

are equivalent.

We can also prove the equivalence of the cate-

gories of models.

Lemma 39. If C is a category satisfying M-

model condition, then ModT (C) is equivalent to

Mod(ThT , C̃T ) where T is the Mt-action on

C.

5. 2 Graded Lawvere theories and Fini-

tary Graded Monads

We prove that the category of graded Law-

vere theories GLawM and the category of finitary

graded monads GMndM are equivalent. Given a

graded Lawvere theory, a finitary graded monad is

obtained as a coend that represents the set of terms.

On the other hand, given a finitary graded monad,

a graded Lawvere theory is obtained from taking

the full sub-[M,Set]0-category on arities ob(Nop
M)

of the opposite category of the Kleisli(-like) cate-

gory in Definition 7. These constructions give rise

to an equivalence of categories.

An M-graded Lawvere theory yields a finitary

graded monad by letting m ∗X be the set of terms

of grade m whose variables range over X.

Definition 40. Let L be an M-graded Lawvere

theory. We define TL = (∗, η, µ) by a (finitary)

M-graded monad whose functor part is given as

follows.

m ∗X :=

∫ n∈ℵ0

L(n, 1)m×Xn

Note that L(−, 1) : ℵ0 → [M,Set]0 is a Set-

functor here.

Given a graded monad, a graded Lawvere theory

is obtained as follows.

Definition 41. Let T = (∗, η, µ) be an M-graded

monad on Set. Let LT be the full sub-[M,Set]0-

category of (S̃etT )
op with ob(LT ) = N.

Since LT hasNM -cotensors n ⋔ 1 = n whose pro-

jections are given by πi = (∗ 7→ η(i)) ∈ Set(1, I∗n),
LT is a graded Lawvere theory.

Given a morphism α : T → T ′ in GMndM,

we define Lα : LT → LT ′ by (Lα)n,n′,m =

Set(n′, αn,m) : LT (n, n
′)m → LT ′(n, n′)m. It is

easy to prove that Lα is a morphism in GLawM

and L(−) : GMndM → GLawM is a functor.

Theorem 42. Two categories GLawM and

GMndM are equivalent.

Proof. L(−) is an essentially surjective fully faithful

functor.

6 Combining Effects

Under the correspondence to algebraic theories,

combinations of computational effects can be un-

derstood as combinations of algebraic theories. In

particular, sums and tensor products are well-

known constructions [9]. In this section, we show

that these constructions can be adapted to graded

algebraic theories. By the equivalence GMndM '
GLawM ' GSM in §5, constructions like sums

and tensor products in one of these categories in-

duce those in the other two categories. So, we

choose GSM and describe sums as colimits in

GSM and tensor products as a mapping GSM1 ×
GSM2 → GSM1×M2 .

6. 1 Sums

We prove that GSM has small colimits.

Lemma 43. The category GSM has small coprod-

ucts.

Proof. Given a family {(Σ(i), E(i))}i∈I of ob-

jects in GSM, the coproduct is obtained by

the disjoint union of operations and equations:∐
i∈I(Σ

(i), E(i)) =
(⋃

i∈I Σ
(i),

⋃
i∈I E

(i)
)
.

Lemma 44. The category GSM has coequalizers.

Proof. Let T = (Σ, E) and T ′ = (Σ′, E′) be

graded algebraic theories and α, β : T → T ′ be

a morphism. The coequalizer T ′′ of α and β is

given by adding the set of equations induced by α

and β to T ′, that is, T ′′ := (Σ′, E′ ∪ E′′) where

E′′ = {(s, t) | ∃f ∈ Σ, α(f) = [s] ∧ β(f) = [t]}.
Since a category has all small colimits if and only

if it has all small coproducts and coequalizers, we

obtain the following corollary.

Corollary 45. Three equivalent categories GSM,

GMndM and GLawM are cocomplete.

Example 46. It is known that the sum of an ordi-

nary monad T and the exception monad (−) + Ex

(where Ex is a set of exceptions) is given by

T ((−) + Ex) [9, Corollary 3]. We show that a sim-

ilar result holds for the graded exception monad.

Let T ex be the theory in Example 26 and M

be the preordered monoid used there. We denote



(∗ex, ηex, µex) for the graded exception monad. Let

T = (Σ, E) be a (1-graded) theory and (T, ηT , µT )

be the corresponding ordinary monad. Let T M =

(ΣM, EM) be the M-graded theory obtained from

T as in Example 27. We consider a graded monad

obtained as the sum of T ex and T M.

A free model functor F for T ex + T M is given

by FXm = T (m ∗ex X). For each n-ary opera-

tion f in T , |f |FX
m : (T (m ∗ex X))n → T (m ∗ex X)

is induced by free models of T , and for each

e ∈ Ex, |raisee|FX
m : 1 → T ({e} ∗ex X) is de-

fined by ηT
{e}∗exX(e) ∈ T ({e} ∗ex X). It is easy

to see that FX defined above is indeed a model of

T ex + T M. Therefore, we obtain a graded monad

m ∗X = T (m ∗ex X).

6. 2 Tensor Products

The tensor product of two ordinary algebraic

theories (Σ, E) and (Σ′, E′) is constructed as

(Σ ∪ Σ′, E ∪ E′ ∪ E⊗) where E⊗ consists of

f(λi.g(λj.xij)) = g(λj.f(λi.xij)) for each f ∈ Σ

and g ∈ Σ′. However, when we extend tensor prod-

ucts to graded algebraic theories, the grades of the

both sides are not necessarily equal. If the grade

of f is m and the grade of g is m′, then the grades

of f(λi.g(λj.xij)) and g(λj.f(λi.xij)) are m ⊗ m′

and m′ ⊗ m, respectively. Therefore, we have to

somehow guarantee that the grade of f ∈ Σ and the

grade of g ∈ Σ′ commute. We solve this problem by

taking the product of monoidal categories. That is,

we define the tensor product of an M1-graded al-

gebraic theory and an M2-graded algebraic theory

as an M1 ×M2-graded algebraic theory.

Before defining tensor products, we consider ex-

tending an M-graded theory to M′-graded theory

along a lax monoidal functor G = (G, ηG, µG) :

M → M′. Given an M-graded theory T =

(Σ, E), we define the M′-graded theory G∗T =

(G∗Σ, G∗E) by (G∗Σ)n,m′ := {f ∈ Σn,m | Gm =

m′} and G∗E := {G∗(s) = G∗(t) | (s = t) ∈
E} where for each term t of T (with grade m),

G∗(t) is the term of G∗T (with grade Gm) de-

fined inductively as follows: if x is a variable, then

G∗(x) := cηG(x); for each w : m → m′ and term

t, G∗(cw(t)) := cGw(G∗(t)); for each f ∈ Σn,m and

terms t1, . . . , tn with grade m′, G∗(f(t1, . . . , tn)) :=

cµG
m,m′

(f(G∗(t1), . . . , G∗(tn))).

The tensor product of T1 ∈GSM1 and T2 ∈GSM2

is defined by first extending T1 and T2 to M1×M2-

graded theories and then adding commutation

equations.

Definition 47 (tensor product). Let T1 =

(Σ, E) ∈ GSM1 and T2 = (Σ′, E′) ∈ GSM2 .

The tensor product T1 ⊗ T2 is defined by (K∗Σ ∪
K′

∗Σ
′,K∗E ∪K′

∗E
′ ∪ ET1⊗T2) ∈ GSM1×M2 where

K : M1 → M1×M2 and K′ : M2 → M1×M2 are

lax monoidal functors defined by Km1 := (m1, I2)

and K′m2 := (I1,m2), and

ET1⊗T2 := {f(λi.g(λj.xij)) = g(λj.f(λi.xij))

| f ∈ (K∗Σ)n,m, g ∈ (K′
∗Σ

′)n′,m′}.

That is, if f is an operation in T1 with grade

m1 ∈ M1, then T1 ⊗ T2 has the operation f with

grade (m1, I2) ∈ M1 ×M2 and similarly for oper-

ations in T2.

The tensor products satisfy the following funda-

mental property.

Proposition 48. Let C be a category satisfying

M1×M2-model condition. Let Ti be an Mi-graded

algebraic theory for i = 1, 2. Then we have an iso-

morphism ModT1(ModT2(C)) ∼= ModT1⊗T2(C).

Proof. Let ((A, | · |′), | · |) ∈ ModT1(ModT2(C)) be a

model. For each operation f in T1, |f | : (A, |·|′)n →
m ⊛ (A, | · |′) is a homomorphism. This con-

dition is equivalent to satisfying the equations in

ET1⊗T2 .

Example 49. We exemplify the tensor product by

showing a graded version of [9, Corollary 6], which

claims that the L-fold tensor product of the side-

effects theory in [21] with one location is the side-

effects theory with L locations.

First, we consider the situation where there is

only one memory cell whose value ranges over a

finite set V . Let 2 the preordered monoid (join-

semilattice) ({⊥,>},≤,∨,⊥) where ≤ is the pre-

order defined by ⊥ ≤ >. Intuitively, ⊥ repre-

sents pure computations, and > represents (pos-

sibly) stateful computations. Let Tst be a 2-graded

theory of two types of operations lookup (arity: V ,

grade: >) and updatev (arity: 1, grade: >) for each

v ∈ V and the four equations in [21] for the inter-

action of lookup and update. Note that we have to

insert coercion to arrange the grade of the equation

lookup(λv ∈ V.updatev(x)) = c⊥≤⊤(x).

The graded monad (∗, η, µ) induced by Tst is as

follows.



⊥ ∗X = X > ∗X = (V ×X)V

((⊥ ≤ >) ∗X)(x) = λv.(v, x)

The middle equation can be explained as follows:

any term with grade> can be presented by a canon-

ical form tf := lookup(λv.updatefV (v)(fX(v)))

where f = 〈fV , fX〉 : V → V × X is a function,

and therefore, the mapping f 7→ tf gives a bijec-

tion between (V ×X)V and > ∗X = TΣ
⊤ (X)/∼.

The L-fold tensor product of Tst, which we de-

note by T ⊗L
st , is a 2L-graded theory where 2L =

(2L,⊆,∪, ∅) is the join-semilattice of subsets of L.

Specifically, T ⊗L
st consists of operations lookupl and

updatel,v with grade {l} for each l ∈ L and v ∈
V with additional three commutation equations

in [21]. The induced graded monad is L′ ∗⊗L X =

{f : V L → (V L × X) | read(L′, f) ∧ write(L′, f)}
where L′ ⊆ L, and read(L′, f) and write(L′, f) as-

sert that f depends only on values at locations in

L′ and does not change values at locations outside

L′. That is, L′ ∗⊗LX represents computations that

touch only memory locations in L′.

read(L′, f) := ∀σ, σ′ ∈ V n, (∀l ∈ L′, σ(l) = σ′(l))

=⇒ f(σ) = f(σ′)

write(L′, f) := ∀σ, σ′ ∈ V n, x ∈ X, (σ′, x) = f(σ)

=⇒ ∀l /∈ L′, σ(l) = σ′(l)

7 Related Work

Algebraic theories for graded monads.

Graded monads are introduced in [27], and no-

tions of graded theory and graded Eilenberg–Moore

algebra appear in [17] [4] for coalgebraic treatment

of trace semantics. However, these work only deal

with N-graded monads where N is regarded as a

discrete monoidal category, while we deal with gen-

eral monoidal categories. The Kleisli construction

and the Eilenberg–Moore construction for graded

monads are presented in [7] by adapting the 2-

categorical argument on resolutions of monads [29].

Algebraic operations for graded monads are in-

troduced in [12] and classified into two types, which

are different in how to integrate the grades of sub-

terms. One is operations that take terms with the

same grade, and these are what we treated in this

paper. The other is operations that take terms with

different grades: the grade of f(t1, . . . , tn) is deter-

mined by an effect function ϵ : Mn → M associated

to f . Although the latter type of operations is also

important to give natural presentations of compu-

tational effects, we leave it for future work.

Enriched Lawvere theories.

There are many variants of Lawvere theories [1,

10,11,15,16,19,24,25,28], and most of them share

a common pattern: they are defined as an identity-

on-objects functor from a certain category (e.g.,

ℵop
0 ) which represents arities, and the functor must

preserve a certain class of products (or cotensors

if enriched). Among the most relevant work to

ours are enriched Lawvere theories [24] and discrete

Lawvere theories [10].

For a given monoidal category V, a Lawvere V-

theory is defined as an identity-on-objects finite

cotensor (i.e. Vfp-cotensor) preserving Vt-functor

J : Vop
fp → L where Vfp is the full subcategory

of V spanned by finitely presentable objects. If

V = [M,Set]0
t, Lawvere [M,Set]0

t-theories are

analogous to our graded Lawvere theories except

that we used Nop
M instead of ([M,Set]0)fp. Since

n · y(I) ∈ Nop
M is finitely presentable, we can say

that the notion of graded Lawvere theory is ob-

tained from enriched Lawvere theories by restrict-

ing arities to Nop
M ⊆ ([M,Set]0)fp. However, the

correspondence to finitary graded monads on Set is

an interesting point of our graded Lawvere theories

compared to LawvereV-theories, which correspond

to finitary V-monads on V.

Discrete Lawvere theories restrict arities of Law-

vere V-theories to ℵ0, that is, a discrete Law-

vere V-theory is defined as a (Set-enriched) finite-

product preserving functor J : ℵop
0 → L0 where

L is a Vt-category. Actually, discrete Lawvere

[M,Set]0
t-theories are equivalent to graded Law-

vere theories because there is a finite-product pre-

serving functor ι : ℵop
0 → Nop

M such that the compo-

sition with ι gives a bijection between graded Law-

vere theories J : Nop
M → L and discrete Lawvere

[M,Set]0
t-theories J0 ◦ ι : ℵop

0 → L0. However, we

considered not only symmetric monoidal categories

but also nonsymmetric ones, which cause a nontriv-

ial problem when we define tensor products of alge-

braic theories. The problem is that adding commu-

tation equations requires some kind of commutativ-

ity of monoidal categories. We solved this problem

by considering product monoidal categories and

defining the tensor product of anM1-graded theory



and an M2-graded theory as an M1 × M2-graded

theory, and the use of two different monoidal cate-

gories is new to the best of our knowledge.

8 Conclusions and Future Work

To extend the correspondence between algebraic

theories, Lawvere theories, and (finitary) monads,

we introduced notions of graded algebraic theory

and graded Lawvere theory and proved their cor-

respondence with finitary graded monads. We also

provided sums and tensor products for graded alge-

braic theories, which are natural extensions of those

for ordinary algebraic theories. Since we do not as-

sume monoidal categories to be symmetric, our ten-

sor products are a bit different from the ordinary

ones in that this combines two theories graded by

(or enriched in) different monoidal categories. We

hope that these results will lead us to apply many

kinds of techniques developed for monads to graded

monads.

As future work, we are interested in “change-

of-effects”, that is, changing the monoidal cate-

gory M in M-graded algebraic theory along a (lax)

monoidal functor F : M → M′. The problem al-

ready appeared in §6. 2 to define tensor products,

but we want to look for more properties of this

operation. We are also interested in integrating

a more general framework for notions of algebraic

theory [6] and obtaining a graded version of the

framework. Another direction is exploiting mod-

els of graded algebraic theories as modalities in the

study of coalgebraic modal logic [4, 17] or weakest

precondition semantics [8].
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