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Trees in Partial Higher Dimensional Automata

Jérémy Dubut

In this paper, we give a new definition of partial Higher Dimension Automata using lax functors. This
definition is simpler and more natural from a categorical point of view, but also matches more clearly the
intuition that pHDA are Higher Dimensional Automata with some missing faces. We then focus on trees.
Originally, for example in transition systems, trees are defined as those systems that have a unique path
property. To understand what kind of unique property is needed in pHDA, we start by looking at trees as
colimits of paths. This definition tells us that trees are exactly the pHDA with the unique path property
modulo a notion of homotopy, and without any shortcuts. This property allows us to prove two interesting
characterisations of trees: trees are exactly those pHDA that are an unfolding of another pHDA; and trees
are exactly the cofibrant objects, much as in the language of Quillen’s model structure. In particular, this
last characterisation gives the premisses of a new understanding of concurrency theory using homotopy
theory.

This paper was presented at FoSSaCS’19 in Prague, and received the best EATCS paper award.

1 Introduction

Higher Dimensional Automata (HDA, for short),
introduced by Pratt in [20], are a geometric model
of true concurrency. Geometric, because they are
defined very similarly to simplicial sets, and can be
interpreted as glueings of geometric objects, here
hypercubes of any dimension. Similarly to other
models of concurrency much as event structures
[18], asynchronous systems [22] [1], or transition sys-
tems with independence [19], they model true con-
currency, in the sense that they distinguish inter-
leaving behaviours from simultaneous behaviours.
In [25], van Glabbeek proved that they form the
most powerful models of a hierarchy of concurrent
models. In [5], Fahrenberg described a notion of
bisimilarity of HDA using the general framework of
open maps from [14]. If this work is very natural, it
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is confronted with a design problem: paths (or exe-
cutions) cannot be nicely encoded as HDA. Indeed,
in a HDA, it is impossible to model the fact that
two actions must be executed at the same time,
or that two actions are executed at the same time
but one must start before the other. From a geo-
metric point of view, those impossibilities are ex-
pressed by the fact that we deal with closed cubes,
that is, cubes that must contain all of their faces.
Motivated by those examples, Fahrenberg, in [6],
extended HDA to partial HDA, intuitively, HDA
with cubes with some missing faces. If the intu-
ition is clear, the formalisation is still complicated
to achieve: the definition from [6] misses the point
that faces can be not uniquely defined. This comes
from the fact that Fahrenberg wanted to stick to
the ‘local’ definition of precubical sets, that is,
that cubes must satisfy some local conditions about
faces. As we will show, those local equations are not
enough in the partial case. Another missed point is
the notion of morphisms of partial HDA: as defined



in [6], the natural property that morphisms map ex-
ecutions to executions is not satisfied. In Section 2,
we address those issues by giving a new definition
of partial HDA in terms of lax functors. This def-
inition, similar to the presheaf theoretic definition
of HDA, avoid the issues discussed above by consid-
ering global inclusions, instead of local equations.
This illustrates more clearly the intuition of partial
HDA being HDA with missing faces: we coherently
replace sets and total functions by sets and partial
functions. From this similarity with the original
definition of HDA, we can prove that it is possible
to complete a partial HDA to turn it into a HDA,
by adding the missing faces, and from this comple-
tion, it is possible to define a geometric realisation
of pHDA (which was impossible with Fahrenberg’s
definition).
The geometry of Higher Dimensional Automata,
and more generally, of true concurrency, has been
studied since Goubault’s PhD thesis [10]. Since
then, numerous pieces of work relating algebraic
topology and true concurrency have been achieved
(for example, see the textbooks [11] [8]). In par-
ticular, some attempts of defining nice homotopy
theories for true concurrency (or directed topol-
ogy), through the language of model structures of
Quillen [21], have been made by Gaucher [9], and
the author [2]. In the second part of this paper
(Sections 3, 4 and 5), we consider another point of
view of this relationship between HDA and model
structures. The goal is not to understand the true
concurrency of HDA, that is, understanding the ho-
motopy theory of HDA as an abstract homotopy
theory, but to understand the concurrency theory
of HDA. By this we mean to understand how paths
(or executions) and extensions of paths can be un-
derstood using (co)fibrations (in Quillen’s sense).
Also, the goal is not to construct a model struc-
ture, as Quillen’s axioms would fail, but to give
intuitions and some preliminary formal statements

toward the understanding of concurrency using ho-
motopy theory. Using this point of view, many con-
structions in concurrency can be understood using
the language of model structures:
– Open maps from [14] can be understood as trivial
fibrations, namely weak equivalences (here, bisim-
ulations) that have the right lifting properties with
respect to some morphisms.
– Those morphisms are precisely extensions of exe-
cutions, which means that they can be seen as cofi-
bration generators (in the language of cofibrantly
generated model structures [12]).
– Cofibrations are then morphisms that have the
left lifting property with respect to open maps. In
particular, this allows us to define cofibrant objects
as those objects whose unique morphisms from the
initial object is a cofibration. In a way, cofibrant
objects are those objects that are constructed by
just using extensions of paths, and should corre-
spond to trees.
– The cofibrant replacement is then given by
canonically constructing a cofibrant object, which
is weakly equivalent (here, bisimilar) to a given ob-
ject. That should correspond to the unfolding.
The main ingredient is to understand what trees
are in this context. In the case of transition systems
for semantics of CCS [16], synchronisation trees are
those systems with exactly one path from the ini-
tial state to any state. Those trees are then much
simpler to reason on, but they are still powerful
enough to capture any bisimulation type: by un-
folding, it is possible to canonically construct a tree
from a system. The goal of Sections 3 and 4 will
be to understand how to generalise this to pHDA.
In this context, it is not clear what kind of unique
path property should be considered as, in general,
in truly concurrent systems, we have to deal with
homotopies, namely, equivalences of paths modulo
permutation of independent actions. Following [3],
we will first consider trees as colimits of paths. This



will guide us to determine what kind of unique path
property is needed: a tree is a pHDA with exactly
one class of paths modulo a notion of homotopy,
from the initial state to any state, and without any
shortcuts. This will be proved by defining a suitable
notion of unfolding of pHDA. Finally, in Section 5,
we prove that those trees coincide exactly with the
cofibrant objects, illustrating the first steps of this
new understanding of concurrency, using homotopy
theory.

2 Fixing the definition of pHDA

In this Section, we review the definitions of HDA
(Section 2. 1), the first one using face maps, and the
second one using presheaves. In Section 2. 2, we de-
scribe the definition of partial HDA from [6] and ex-
plain why it does not give us what we are expecting.
We tackle those issues by introducing a new defini-
tion in Section 2. 3, extending the presheaf theoretic
definition, using lax functors instead of strict func-
tors. Finally, in Section 2. 4, we prove that HDA
form a reflective subcategory of partial HDA, by
constructing a completion of a partial HDA.

2. 1 Higher Dimensional Automata
Higher Dimensional Automata are an extension of
transition systems: they are labeled graphs, except
that, in addition to vertices and edges, the graph
structure also has higher dimensional data, express-
ing the fact that several actions can be made at the
same time. Those additional data are intuitively
cubes filling up interleaving: if a and b can be made
at the same time, instead of having an empty square
as on the left figure, with a.b and b.a as only be-
haviours, we have a full square as on the right fig-
ure, with any possible behaviours in-between. This
requires to extend the notion of graph to add those
higher dimensional cubical data: that is the notion
of precubical sets.
Concrete definition of precubical sets. A pre-
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図 1 Interleaving vs. true concurrency

cubical set X is a collection of sets (Xn)n∈N to-
gether with a collection of functions

(∂α
i,n : Xn −→ Xn−1)n>0,1≤i≤n,α∈{0,1}

satisfying the local equations
∂α
i,n ◦ ∂β

j,n+1 = ∂β
j,n ◦ ∂α

i+1,n+1

for every α, β ∈ {0, 1}, n > 0 and 1 ≤ j ≤ i ≤ n. A
morphism of precubical sets from X to Y is a
collection of functions

(fn : Xn −→ Yn)n∈N

satisfying the equations
fn ◦ ∂α

i,n = ∂α
i,n ◦ fn+1

for every n ∈ N, 1 ≤ i ≤ n and α ∈ {0, 1}. The
elements of X0 are called points, X1 segments,
X2 squares, Xn n-cubes. In the following, we
will call past (resp. future) i-face maps the ∂0

i,n

(resp. ∂1
i,n). We denote this category of precubical

sets by pCub.

Precubical sets as presheaves. Equivalently,
pCub is the category of presheaves over the cubi-
cal category �. � is the subcategory of Set whose
objects are the sets {0, 1}n for n ∈ N and whose
morphisms are generated by the so-called coface
maps:

dαi,n : {0, 1}n−1 −→ {0, 1}n

(β1, . . . , βn−1) 7−→ (β1, . . . , βi−1, α, βi, . . . , βn−1)

A precubical set is a functor X : �op −→ Set, that
is, a presheaf over �, and a morphism of precubical
sets is a natural transformation.

Higher dimensional Automata [24]. From now
on, fix a set L, called the alphabet. We can form



a precubical set also noted L such that Ln = Ln

and the i-face maps are given by δαi (a1 . . . an) =

a1 . . . ai−1.ai+1 . . . an. We can also form the fol-
lowing precubical set ∗ such that ∗0 = {∗} and
∗n = ∅ for n > 0. A HDA X on L is a bialgebra
∗ → X → L in pCub. In other words, a HDA
X is a precubical set, also noted X, together with
a specified point, the initial state, i ∈ X0 and a
labelling function

λ : X1 −→ L

satisfying the equations
λ ◦ ∂0

i,2 = λ ◦ ∂1
i,2

for i ∈ {1, 2} (see previous figure, right). A mor-
phism of HDA from X to Y is a morphism f of
precubical sets from X to Y such that

f0(iX) = iY and λX = λY ◦ f1.
HDA on L and morphisms of HDA form a category
that we denote by HDAL. This category can also
be defined as a the double slice category

∗/pCub/L.
Remark that we are only concerned with labelling-
preserving morphisms, not general morphisms as
described in [4].

2. 2 Original definition of partial Higher
Dimensional Automata

Originally [6], partial HDA are defined similarly to
the concrete definition of HDA, except that the face
maps can be partial functions and the local equa-
tions hold only when both sides are well defined.
There are two reasons why it fails to give the good
intuition:
– first the ‘local’ equations are not enough in the
partial case. Imagine that we want to model a full
cube c without its lower face, that is, ∂0

3,3 is not
defined on c, and such that ∂1

1,2 is undefined on
∂1
1,3(c) and ∂1

2,3(c), that is, we remove an edge.
We cannot prove using the local equations that
∂1
1 ◦ ∂0

2 ◦ ∂1
1(c) = ∂1

1 ◦ ∂0
2 ◦ ∂1

2(c), that is, that the
vertices of the cube are uniquely defined. Indeed,
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図 2 Cube with 9 vertices

to prove this equality using the local equations,
you can only permute two consecutive ∂. From
∂1
1 ◦ ∂0

2 ◦ ∂1
1(c), you can:

• either permute the first two and you obtain
∂1
1 ◦ ∂1

1 ◦ ∂0
3(c),

• or permute the last two and you obtain
∂0
1 ◦ ∂1

1 ◦ ∂1
1(c).

and both faces are not defined. On the other hand,
those two should be equal because the comaps
d11 ◦ d02 ◦ d11 and d12 ◦ d02 ◦ d11 are equal in �, and
∂1
1 ◦ ∂0

2 ◦ ∂1
1 and ∂1

1 ◦ ∂0
2 ◦ ∂1

2 are both defined on c.
– secondly, the notion of morphism is not good (or
at least, ambiguous). The equations

fn ◦ ∂α
i,n,X = ∂α

i,n,Y ◦ fn+1

hold in [6] only when both face maps are defined,
which authorises many morphisms. For example,
consider the segment I, and the ‘split’ segment I ′

which is defined as I, except that no face maps
are defined (geometrically, this corresponds to two
points and an open segment). The identity map
from I to I ′ is a morphism of partial precubical
sets in the sense of [6], which is unexpected. A bad
consequence of that is that the notion of paths in
a partial HDA does not correspond to morphisms
from some particular partial HDA, and paths are
not preserved by morphisms, as we will see later.
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図 3 Segment vs. split segment

2. 3 Partial Higher Dimensional Automata
as lax functors

The idea is to generalise the ‘presheaf’ definition
of precubical sets. The problem is to deal with
partial functions and when two of them should co-
incide. Let pSet be the category of sets and partial
functions. A partial function f : X −→ Y can be
either seen as a pair (A, f) of a subset A ⊆ X and
a total function f : A −→ Y , or as a functional
relation f ⊆ X × Y , that is, a relation such that
for every x ∈ X, there is at most one y ∈ Y with
(x, y) ∈ f . We will freely use both views in the
following. For two partial maps f, g : X −→ Y , we
denote by f ≡ g if and only if for every x ∈ X such
that f(x) and g(x) are defined, then f(x) = g(x).
Note that this is not equality, but equality on the
intersection of the domains. We also write f ⊆ g

if and only if f is include in g as a relation, that
is, if and only if, for every x ∈ X such that f(x) is
defined, then g(x) is defined and f(x) = g(x). By a
lax functor F : C ⇀ pSet, we mean the following
data [17]:
– for every object c of C, a set Fc,
– for every morphism i : c −→ c′, a partial func-
tion Fi : Fc −→ Fc′

satisfying that
F idc = idFc and Fj ◦ Fi ⊆ F (j ◦ i).

The point is that partial precubical sets as defined
in [6] do not satisfy the second condition, while
they should. In addition, this definition will autho-
rise a square to have vertices, that is, that some
∂∂ are defined, while having no edge, that is, no
∂ defined. This may be useful to define paths as

discrete traces in [7] (that we will call shortcuts
later), that is, paths that can go directly from a
point to a square for example. Observe also that if
j ◦i = j′◦i′ then Fj ◦Fi ≡ Fj′◦Fi′, which gives us
the local equations from [6]. A partial precubical
set X is then a lax functor F : �op ⇀ pSet. It be-
comes harder to describe explicitly what a partial
precubical set is, since we cannot restrict to the ∂α

i

anymore. It is a collection of sets
(Xn)n∈N

together with a collection of partial functions
(∂

α1,...,αk
i1<...<ik

: Xn+k −→ Xn)

satisfying the inclusions
∂β1,...,βm
j1<...<jm

◦ ∂α1,...,αn
i1<...<in

⊆ ∂
γ1,...,γn+m

k1<...<kn+m

where the ks and γs are defined as follows. (k1 <

. . . < kn+m; γ1, . . . , γn+m) = (i1 < . . . <

in;α1, . . . , αn) ? (j1 < . . . < jm;β1, . . . , βm) where
? is defined by induction on n+m:
– if n = 0, ε ? (j1 < . . . < jm;β1, . . . , βm) = (j1 <

. . . < jm;β1, . . . , βm),
– if m = 0, (i1 < . . . < in;α1, . . . , αn) ? ε = (i1 <

. . . < in;α1, . . . , αn),
– if i1 ≤ j1, (i1 < . . . < in;α1, . . . , αn) ? (j1 <

. . . < jm;β1, . . . , βm) = (i1;α1).((i2 < . . . <

in;α2, . . . , αn)?(j1+1 < . . . < jm+1;β1, . . . , βm)),
– if i1 > j1, (i1 < . . . < in;α1, . . . , αn) ? (j1 <

. . . < jm;β1, . . . , βm) = (j1;β1).((i1 < . . . <

in;α1, . . . , αn) ? (j2 < . . . < jm;β2, . . . , βm)).
A function-valued op-lax transformation [17]

from F : C ⇀ pSet to G : C ⇀ pSet is a collection
(fc)c∈Ob(C)

of total functions such that for every i : c −→ c′,
fc′ ◦ F (i) ⊆ G(i) ◦ fc.

A morphism of partial precubical sets from X

to Y is then a function-valued op-lax transforma-
tion. In other words, this is a collection of total
functions

(fn : Xn −→ Yn)n∈N

satisfying the equations
fn ◦ ∂α1,...,αk

i1<...<ik
⊆ ∂

α1,...,αk
i1<...<ik

◦ fn+k.



Partial precubical sets and morphisms of partial
precubical sets form a category that we denote by
ppCub. pCub is a full subcategory of ppCub.
In particular, the precubical sets ∗ and L are par-
tial precubical sets. A partial HDA X on L is a
partial precubical set, also noted X, together with
a specified point, the initial state i ∈ X0 and a
morphism of ppCub, the labelling functions,

(λn : Xn −→ Ln)n∈N.

A morphism of pHDA from X to Y is a mor-
phism f of partial precubical sets from X to Y such
that

f0(iX) = iY and λX = λY ◦ f.
Partial HDA on L and morphisms of partial HDA
form a category that we note pHDAL. In other
words, this is the double slice category

∗/ppCub/L.

2. 4 Completion of a pHDA
Let us describe how it is possible to construct a
HDA from a pHDA X, by ‘completing’ X, that is,
by adding the faces that are missing, and by con-
necting the faces that are not. Let
Yn = {((i1 < . . . < ik;α1, . . . , αk), x)

| x ∈ Xn+k ∧ ik ≤ n+ k}.
Y = (Yn)n∈N is intuitively the collection of all ab-
stract faces of all cubes of X, that is, pairs of a cube
and all possible ways to define a face from it. Of
course, some of those are the same, since there are
several ways to describe a cube as the face of some
other cube. Define ∼ as the smallest equivalence
relation such that:
– if ∂α1,...,αk

i1<...<ik
(x) is defined, then

((i1 < . . . < ik;α1, . . . , αk), x) ∼ (ε, ∂
α1,...,αk
i1<...<ik

(x)).

This means that, if a face of a cube exists in
X, this face is identified with both abstract faces
(ε, ∂

α1,...,αk
i1<...<ik

(x)) (i.e., the cube ∂
α1,...,αk
i1<...<ik

(x) itself)
and ((i1 < . . . < ik;α1, . . . , αk), x) (i.e., the face of
x, which consists of taking the (ik, αk) face, then
the (ik−1, αk−1) face, and so on).

– if ((i1 < . . . < ik;α1, . . . , αk), x) ∼ ((j1 < . . . <

jl;β1, . . . , βl), y), then ((i1 < . . . < ik;α1, . . . , αk) ?

(i, α), x) ∼ ((j1 < . . . < jl;β1, . . . , βl) ? (i, α), y).
This means that if two abstract faces coincide, then
taking both their (i, α) face gives two abstract faces
that also coincide.
Let χ(X)n = Yn/ ∼ and we denote by

� (i1 < . . . < ik;α1, . . . , αk), x �
the equivalence class of

((i1 < . . . < ik;α1, . . . , αk), x)

modulo ∼. We define the i-face map
∂α
i (� (i1 < . . . < ik;α1, . . . , αk), x �)

as
� (i1 < . . . < ik;α1, . . . , αk) ? (i, α), x �,

the initial state as � ε, i � and the labelling func-
tion

λ(� (i1 < . . . < ik;α1, . . . , αk), x �)

as
δα1
i1

◦ . . . ◦ δαk
ik

(λ(x)).

Theorem 1. χ is a well-defined functor and is
the left adjoint of τ , the injection of HDAL into
pHDAL. Furthermore, HDAL is a reflective sub-
category of pHDAL.
Now, we can define the geometric realisation
of a pHDA X as the subspace of the realisation of
χ(X) consisting of points whose carrier is of the
form � ε, x � for some x ∈ X. This really cor-
responds to the drawings we have been using to
depict pHDA until now.

3 Paths in partial Higher Dimensional
Automata

Executions of HDA are defined using the notion
of paths. Those paths describe the succession of
starting and finishing of actions in a HDA. For ex-
ample, a HDA can start an action then start an-
other at the same time, and finish the two actions.
This sequence is then not just a sequence of 1-
dimensional transitions, since some actions can be
made at the same time, but a sequence of hyper-
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図 4 Lifting property of an open map

cubes corresponding to the evolution of the state of
the system. We will formalise this idea in Section
3. 2, and we will see in particular that those paths
can be encoded in the category pHDAL (while it is
not possible in the category HDAL) as morphisms
from particular pHDA, called path shapes. In Sec-
tion 3. 1, let us first start by recalling the general
framework of [14].

3. 1 Path category, open maps, coverings
In the general framework of [14], we start with a
category M of systems, together with a subcate-
gory P of execution shapes. For example, keep in
mind the case where M is the category of transition
systems and P is the full subcategory of finite linear
systems. One interesting remark about this case is
that executions of a given systems are in bijective
correspondance with morphisms from a finite lin-
ear system to this given system. This means that
to reason about behaviours of such systems, it is
enough to reason about morphisms and execution
shapes.
This idea was formalised by describing precisely
which morphisms are witnesses for the existence of
a bisimulation between systems. This description
uses right lifting properties: we say that a mor-
phism f : X −→ Y has the right lifting prop-
erty with respect to g : X ′ −→ Y ′ if for ev-
ery x : X ′ −→ X and y : Y ′ −→ Y such that
f ◦ x = y ◦ g, there exists θ : Y ′ −→ X such that
x = θ ◦ g and f ◦ θ = y. For example, let us assume
that f is a morphism of transition systems and that
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図 5 In red: path π = 0
1,0−−→ β

2,0−−→ c
1,1−−→ γ in the

pHDA X

X ′ and Y ′ are finite linear systems. Then x (resp.
y) is the same as an execution in X (resp. Y ), and
f ◦ x = y ◦ g means that the execution y is a ex-
tension of the image of the execution x by f . The
right lifting property means that the longer execu-
tion y of Y can be lifted to a longer execution θ of
X, that is, θ is an extension of x and the image of θ
by f is y. This property of lifting longer executions
is precisely the property needed on a morphism to
make its graph relation a bisimulation. They are
also very similar to morphisms of coalgebras [13].
We call P-open (or simply open when P is clear),
a morphism that has the right lifting property with
respect to every morphism in P. From open maps,
it is possible to describe similarity and bismilar-
ity as the existence of a span of morphisms/open
maps, and many kinds of bisimilarities can be cap-
tured in this way [14]. An open map is said to be
a P-covering (or simply covering) if furthermore
the lifts in the right lifting properties are unique.
Being a covering is a very strong requirement, as
they correspond to partial unfolding of a system.

3. 2 Encoding paths in pHDA
In this section, we describe the classical notion of
execution of HDA from [25], extended to partial
HDA in [6], defined using the notion of path. We
then show that those executions can be encoded as
an execution shapes subcategory, as in the general
framework of [14], proving in particular that paths



are in bijective correspondance with a class of mor-
phisms. A path π of a HDA X is a sequence

i = x0
j1,α1−−−→ x1

j2,α2−−−→ . . .
jn,αn−−−−→ xn

where xk ∈ X, jk > 0 and αk ∈ {0, 1} are such
that for every k:
– if αk = 0, then xk−1 = ∂0

jk
(xk),

– if αk = 1, then xk = ∂1
jk
(xk−1).

This definition can easily be extended to pHDA,
by requiring that the jk-face maps are defined on
xk or xk−1. A natural property of executions and
morphisms is that morphisms map executions to
executions. This is the case here (while it is not for
[6], e.g., the split segment):
Proposition 1. If f : X −→ Y is a map of pHDA
and if

π = x0
j1,α1−−−→ x1

j2,α2−−−→ . . .
jn,αn−−−−→ xn

is a path in X, then
π′ = f(x0)

j1,α1−−−→ f(x1)
j2,α2−−−→ . . .

jn,αn−−−−→ f(xn)

is a path in Y .
One advantage of considering pHDA instead of
HDA is that paths can be encoded in pHDA, which
is not really possible in HDA. It is done as follows.
A spine σ is a sequence
(d0, w0)

j1,α1−−−→ (d1, w1)
j2,α2−−−→ . . .

jn,αn−−−−→ (dn, wn)

where (d0, w0) = (0, ε), jk > 0, dk ∈ N, wk ∈ Ldk

and αk ∈ {0, 1} are such that:
– if αk = 0, then dk−1 = dk − 1, δjk (wk) = wk−1

and jk ≤ dk,
– if αk = 1, then dk = dk−1 − 1, δjk (wk−1) = wk

and jk ≤ dk−1.
A path π has a underlying spine σπ by mapping xk

to the pair of its dimension and its label. A spine
σ induces a pHDA Bσ as follows:
•Bσp = {k ∈ {0, . . . , n} | dk = p},
• the partial face maps ∂α1,...,αn

i1<...<in
are the smallest

(as relations ordered by inclusion) partial func-
tions such that:
– if αk = 0, then ∂0

jk
(k) = k − 1,

– if αk = 1, then ∂1
jk
(k − 1) = k,

– ∂β1,...,βm
j1<...<jm

◦ ∂α1,...,αn
i1<...<in

⊆ ∂
γ1,...,γn+m

k1<...<kn+m
, for

no
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de
fin

ed
not

defined

no
t

de
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not defined
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e
fi
n
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d

•

×

×

×

ε a

ab b

図 6 Path shape of the spine

σ = (0, ε)
1,0−−→ (1, a)

2,0−−→ (2, ab)
1,1−−→ (1, b)

(k1, . . . , kn+m; γ1, . . . , γn+m) =

(i1, . . . , in;α1, . . . , αn) ? (j1, . . . , jm;β1, . . . , βm).
• the initial state is 0,
• the labelling functions λn map k to wk.
By a path shape, we mean such a pHDA Bσ.
The set SpineL of spines can be partially ordered
by prefix. B can then be extended to an embed-
ding from SpineL to pHDAL. We note PSL the
image of this embedding, i.e., the full sub-category
of path shapes.
Proposition 2. There is a bijection between paths
in a pHDA X and morphisms of pHDA from a path
shape to X.
Again, this is not true with the definition of mor-
phisms from [6] (e.g., the split segment). As an
example, the red path π above corresponds to a
morphism from the path shape Bσ to X.

4 Trees and unfolding in pHDA

In this section, we introduce our notion of trees.
Following [3], we consider trees as colimits (or glue-
ings of paths). Section 4. 1 is dedicated to prov-
ing that those colimits actually exist, by giving an
explicit construction of those. From this explicit
construction, we will describe the kind of unique
path properties that are satisfied by those trees in
Section 4. 2. Starting by showing, that the strict
unicity of path fails, we then describe a notion of
homotopy, the confluent homotopy, which is weaker



(0, ε)
1,0−−→ (1, b)

1,0−−→ (2, ab)
1,1−−→ (1, b)

1,1−−→ (0, ε)

B
•

×

×

•β1

(0, ε)
1,0−−→ (1, b)

1,0−−→ (2, ab)

A
•

×

×

×
(0, ε)

1,0−−→ (1, b)
1,0−−→ (2, ab)

2,1−−→ (1, a)
1,1−−→ (0, ε)

C
•

×

×

•β2

•

×

×

•

D
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β
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図 7 Example of colimits of path shapes

than the one from [25], for which every tree has
the property that there is exactly one homotopy
class of paths form the initial state to any state.
We will also see that, because the face maps of
trees are defined in a local way, they do not have
any shortcuts, that is, paths that ‘skip’ dimensions,
for example, going from a point to a square with-
out going through a segment. Finally, in Section
4. 3, we will prove that those two properties – the
unicity of paths modulo confluent homotopy, and
the non-existence of shortcuts – completely charac-
terise trees. This proof will use a suitable notion of
unfolding of pHDA, showing furthermore that trees
form a coreflective subcategory of pHDA.

4. 1 Trees, as colimits of paths in pHDA
In this section, we give an explicit construction of
colimits of diagrams with values in path shapes.
Those will be our first definition of trees in pHDA,
following [3]. Let D : C −→ PSL be a small dia-
gram with values in PSL, that is, a functor from
C to PSL. Let us use some notations: for every
object u of C, Du = Bσu with σu being

(du0 , w
u
0 )

ju1 ,αu
1−−−−→ (du1 , w

u
1 )

ju2 ,αu
2−−−−→ . . .

julu
,αu

lu−−−−−→ (dulu , w
u
lu).

The definition of the colimit colD will be in two
steps. The first step consists in putting all the

paths Du side-by-side, and in glueing them to-
gether, along the morphisms Df , for every mor-
phism f of C. This is done as follows. Define
(Xn)n∈N to be:
– X0 = {(u, k) | u ∈ C, k ≤ lu ∧ duk = 0} t {ε},
– Xn = {(u, k) | u ∈ C, k ≤ lu ∧ duk = n}.
We quotient Xn by the smallest equivalence rela-
tion ∼ (for inclusion) such that:
– for every u, (u, 0) ∼ ε,
– if i : u −→ v ∈ C, and if k ≤ lu, lv, then
(u, k) ∼ (v, k).
We denote by Yn the quotient Xn/ ∼, and by [u, k]

the equivalence class of (u, k) modulo ∼.
At this stage, we still do not have the colimit be-
cause it is not possible to define the face maps. Let
us consider the following example.
A, B and C are path shapes, and we would like
to compute their pushout. The expected outcome
is D, since we must identify the three squares by
the previous construction. The problem is that the
previous construction does not identify β1 and β2.
Those two must be identified because they are both
the top right corner of the same square (after iden-
tification). We hence need to quotient a little more
to be able to define the face maps, as follows. De-
fine Zn to be the quotient of Yn by the smallest
equivalence relation ≈ such that if there are two
sequences u0, . . . , ul and v0, . . . , vl such that:



– [u0, k] ≈ [v0, k],
– for every 0 ≤ s ≤ l, αus

k+1+s = αvs
k+1+s = 1,

– for every 0 ≤ s < l, [us, k+s+1] ≈ [us+1, k+s+1]

and [vs, k + s+ 1] ≈ [vs+1, k + s+ 1],
– (ju0

k+1; 1) ? . . . ? (j
ul
k+l+1; 1) = (jv0k+1; 1) ? . . . ?

(j
vl
k+l+1; 1),

then, [ul, k + l + 1] ≈ [vl, k + l + 1]. colD is the
pHDA ZN with the face maps being the smallest
relations for inclusion such that:
– if αu

k = 0, then ∂0
ju
k
(〈u, k〉) is defined and is equal

to 〈u, k − 1〉,
– if αu

k+1 = 1 then ∂1
ju
k
(〈u, k〉) is defined and is

equal to 〈u, k + 1〉,
– ∂β1,...,βm

j1<...<jm
◦ ∂α1,...,αn

i1<...<in
⊆ ∂

γ1,...,γn+m

k1<...<kn+m
, for

(k1, . . . , kn+m; γ1, . . . , γn+m) =

(i1, . . . ,in;α1, . . . , αn) ? (j1, . . . , jm;β1, . . . , βm).

The initial state is 〈ε〉 and the labelling λ :

colD −→ L maps 〈u, k〉 to wu
k .

Proposition 3. colD is the colimit of D in
pHDAL

By tree we mean any pHDA that is the colimit of
a diagram with values in path shapes. We denote
by TrL the full subcategory of trees.

4. 2 The unique path properties of trees

Failure of the unicity of paths. Let us consider
the pushout square above again. In particular, the
pHDA on the bottom-right corner is a tree, by def-
inition. However, there are two paths from α to
β (in red and blue). This actually comes from the
fact that we needed to identify β1 and β2 to be able
to define the face maps. This means that trees do
not have the unique path property.

Confluent homotopy. A careful reader may
have observed that the only difference between the
two previous paths is that some future faces are
swapped. Actually, this is the only obstacle for the
unicity of paths for trees: there is a unique path

•

•

•

•

π′

π

!
ch

図 8 Example of confluent homotopy

modulo equivalence of paths that permutes arrows
of the form _,1−−→. That is what we call confluent
homotopy. This confluent homotopy will be de-
fined by restricting the elementary homotopies of
[25] to be of only one type out of the four possible,
which means our notion of homotopy makes fewer
paths equivalent than the one from [25].
We say that a path

π = x0
j1,α1−−−→ x1

j2,α2−−−→ . . .
jn,αn−−−−→ xn

is elementary confluently homotopic to a path
π′ = x′

0

j′1,α
′
1−−−→ x′

1

j′2,α
′
2−−−→ . . .

j′n,α′
n−−−−→ x′

n,

and denote by π !ch π′, if and only if there are
0 < s < t ≤ n such that:
– for all k < s or k ≥ t, xk = x′

k,
– for all k < s or k > t, jk = j′k and αk = α′

k,
– for all s ≤ k ≤ t, αk = α′

k = 1,
– (js, αs) ? . . . ? (jt, αt) = (j′s, α

′
s) ? . . . ? (j

′
t, α

′
t).

We denote by ∼ch, and call confluent homotopy,
the reflexive transitive closure of !ch.
Lemma 1. If X is a tree, then for every element
(of any dimension) x of X, there is exactly one path
modulo confluent homotopy from the initial state to
x.

Shortcuts. The face maps of path shapes and of
the colimits we computed in Section 4. 1 are of a
very particular form: we start by defining the ∂α

j

and we extend this definition to general ∂α1,...,αn
j1<...<jn

.
In a way, they are locally defined, and then ex-
tended to higher face maps. This means in par-
ticular that, in addition to having unique paths
modulo confluent homotopy, they also do not have



any ‘shortcut’. A possible shortcut can be defined
as a generalisation of paths, in which we allow to
make transitions that go, for example, from a point
to a square or to a cube, not only to segments, a
shortcut being such a possible shortcut which is not
confluently homotopic to a path. Those shortcuts
may occur in a pHDA, even if it has the unique
path property. Concretely, by shortcut we mean
the following situation: the face ∂α1,...,αn

i1<...<in
(x) is de-

fined, but there is no sequence
(j1;β1) ? . . . ? (jn;βn) = (i1 < . . . < in;α1, . . . , αn)

such that ∂αn
jn

◦ . . . ◦ ∂α1
j1

(x) is defined. By local-
definedness of the face maps:
Lemma 2. Trees do not have any shortcuts.

Trees. We say that a pHDA has the unique
path property modulo confluent homotopy
if it has no shortcut, and there is exactly one class
of paths modulo confluent homotopy from the ini-
tial state to any state. Given such a pHDA X and
an element x of X, by depth of x we mean the
length of a path from the initial state to x in X.
Since homotopic paths have the same length, this
is uniquely defined. We deduce from the previous
discussions that:
Proposition 4. Trees have unique path property
modulo confluent homotopy.
In the following, we will prove the converse: trees,
defined as colimits of path shapes are exactly those
pHDA that have the unique path property modulo
confluent homotopy. This will be done by proving
that such a pHDA X is isomorphic to its unfolding.
A question that occurs now is the following. Much
as the general framework of [3], trees are colimits of
paths. Everything tends to work well when those
trees have a nice property, which we called acces-
sibility, intuitively, that the colimit process do not
‘create’ paths. This property is actually deeply re-
lated to the unicity of paths. Since this unicity fails
in the case of pHDA, accessibility fails too. How-

ever, an accessibility modulo confluent homotopy
holds: the colimit process in pHDA do not create
confluent homotopy classes of paths.

4. 3 Trees are unfoldings
We are now constructing our unfolding U(X) of a
pHDA X by giving an explicit definition, similar
to [24] [5], and proving that this is a tree. We will
prove that there is a covering unfX : U(X) −→ X,
which in particular means that the unfolding U(X)

is PSL-bisimilar (in the general sense of [14]) to X,
and that this covering is actually an isomorphism
when X has the unique path property modulo con-
fluent homotopy.

Unfolding of a pHDA. Let us start with a few
notations. Given a path

π = x0
j1,α1−−−→ x1

j2,α2−−−→ . . .
jn,αn−−−−→ xn

we note e(π) = xn, l(π) = n and
π−k = x0

j1,α1−−−→ x1
j2,α2−−−→ . . .

jn−k,αn−k−−−−−−−→ xn−k.

Given a pHDA X, its unfolding is the following
pHDA:
– U(X)n is the set of equivalence classes [π] of
paths modulo confluent homotopy, such that e(π)

is of dimension n,
– the face maps are the smallest relations for in-
clusion such that:
• ∂1

i (α) = [π
i,1−−→ ∂1

i (e(π))], for any π ∈ α such
that ∂1

i (e(π)) is defined,
• ∂0

i (α) = [π−1] for any π ∈ α such that π =

π−1
i,0−−→ e(π),

• ∂β1,...,βm
j1<...<jm

◦ ∂α1,...,αn
i1<...<in

⊆ ∂
γ1,...,γn+m

k1<...<kn+m
, for

(k1, . . . , kn+m; γ1, . . . , γn+m) =

(i1, . . . ,in;α1, . . . , αn) ? (j1, . . . , jm;β1, . . . , βm).

– the initial state is [i],
– the labelling is given by λ(α) = λ(e(π)) for
π ∈ α.
Following ideas from [3] again, the unfolding can
be seen as the glueing of all possible executions of
a system, but with care needed to handle confluent



homotopy. Concretely:
Proposition 5. The unfolding of a pHDA is a tree.
We can also define unfX : U(X) −→ X as the
function that maps [π] to e(π).
Proposition 6. unfX is a covering, and so, U(X)

is PSL-bisimilar to X.

The unique path property characterises
trees. When X has exactly one class of paths
modulo confluent homotopy from the initial state
to any state, it is possible to define a function
ηX : X −→ U(X) that maps any element x of X to
the unique confluent homotopy class to x. When
furthermore X does not have shortcuts, then η is
actually a morphism of pHDA.
Proposition 7. When X has the unique path prop-
erty modulo confluent homotopy, then ηX is the in-
verse of unfX . In particular, X is a tree.
Together with Proposition 4, this implies the fol-
lowing:
Theorem 2. Trees are exactly the pHDA that have
the unique path property modulo confluent homo-
topy.
Another consequence is that this isomorphism ηX

is actually natural (in the categorical sense) and is
part of an adjunction, which implies that trees form
a coreflective subcategory of pHDA:
Corollary 1. U extends to a functor, which is the
right adjoint of the embedding ι : TrL −→ pHDAL.
Furthermore, this is a coreflection.

5 Cofibrant objects

Cofibrant objects are another type of ‘simple ob-
jects’, coming from homotopy theory, more par-
ticularly the language of model categories from
[21]. Those cofibrant objects are those whose
unique morphism from the initial object is a cofi-
bration. Intuitively (intuition which holds at least
in cofibrantly generated model structures [12]),
this means that cofibrant objects are those objects

∗ Y

X Z

!

f

g

!
h

∗ U(X)

X X

!

unf

idX

!
h

図 9 Left: cofibrant object; Right: Unfolding is

cofibrant

constructed from ‘nothing’, using only very basic
constructions (generators of cofibrations). In the
case of the classical model structure on topological
spaces (Kan-Quillen), those spaces are those con-
structed from the empty space by adding ‘cells’,
which produces what is called CW-complexes. In
this section, we want to mimic this idea with trees:
trees are those pHDA constructed from an initial
state by only extending paths. We also want to em-
phasize that much as CW-complexes gives a kind of
homotopy type of a space, trees gives a concurrency
type of a pHDA, in the sense that there is a canon-
ical way to produce an equivalent cofibrant object
out of any object, which is called the cofibrant
replacement in homotopy theory. In concurrency
theory, this is the unfolding.

5. 1 Cofibrant objects in pHDAL

Following the language of model structures from
[21], we say that a pHDA X is cofibrant if for
every PSL-open morphism f : Y −→ Z and ev-
ery morphism g : X −→ Z, there is a morphism
h : X −→ Y , such that f ◦h = g. That is, a partial
HDA X is cofibrant if and only if every PSL-open
morphism has the right lifting property with re-
spect to the unique morphism from ∗ to X.

5. 2 Cofibrant objects are exactly trees
In this section, we would like to prove the follow-
ing:
Theorem 3. The cofibrant objects are exactly
trees.



Let us start by giving the idea of the proof of the
fact that cofibrant objects are trees. By Proposi-
tion 6, unfX is a covering, so is open. This means
that for every cofibrant object X, there is a mor-
phism h : X −→ U(X) such that unfX ◦ h = idX ,
that is, X is a retract of its unfolding. Since we
know that the unfolding is a tree by Proposition 5,
it is enough to observe the following:
Lemma 3. A retract of a tree is a tree.
Intuitively, a pHDA is the retract of a tree only
when it is obtain by retracting branches. This can
only produce a tree. For the converse:
Proposition 8. A tree is a cofibrant object. Fur-
thermore, if f : Y −→ Z is a covering, then the lift
h : X −→ Y is unique.
The lift h is constructed by induction as follows.
We define Xn as the restriction of X to elements
whose depth is smaller than n, and the face maps
∂α1,...,αm
j1<...<jm

(x) are defined if and only if ∂α1,...,αm
j1<...<jm

(x)

is defined in X and belongs to Xn. We then
construct hn : Xn −→ Y using the unique path
property modulo confluent homotopy, in a natural
way (in the categorical meaning), i.e., such that
hn ◦ κn = hn−1, where κn : Xn−1 −→ Xn is the
inclusion. h is then the inductive limit of those hn.
This proof can be seen as a small object argument.

5. 3 The unfolding is universal
As an application of the previous theorem, we
would like to prove that the unfolding is universal.
As in the case of covering spaces in algebraic topol-
ogy, a covering corresponds to a partial unrolling
of a system, in the sense that we can unroll some
loops or even partially unroll a loop (imagine for
example executing a few steps of a while-loop). In
this sense, we can describe the fact that a covering
unrolls more than another one, and that, an unfold-
ing is a complete unrolling: since the domain is a
tree, it is impossible to unroll more. Actually, much
as the topological and the groupoidal cases (see [15]

for example), unfoldings are the only such maximal
unrollings among coverings: they are initial among
coverings, that is why we call them ‘universal’. In
a way, this says that our definition of unfolding is
the only reasonable one. Concretely, we say that a
PSL-covering is universal if its domain is a tree.
Corollary 2. If f : Y −→ X is a universal cov-
ering, then for every covering g : Z −→ X there
is a unique map h : Y −→ X such that f = g ◦ h.
Furthermore, h is itself a covering. Consequently,
the universal covering is unique up-to isomorphism,
and is given by the unfolding.
This whole story is similar to the universal cover-
ing of a topological space: just replace pHDA by
spaces and trees by simply-connected spaces [23].

6 Conclusion and future work

In this paper, we have given a cleaner definition
of partial precubical sets and partial Higher Di-
mensional Automata, as they really correspond to
collections of cubes with missing faces. From this
categorical definition, we derived that pHDA can
be completed, giving rise to a geometric realisa-
tion. We also describe the first premisses of a ho-
motopy theory of the concurrency of pHDA where
the cofibrant objects are trees, and replacement is
the unfolding. As a future work, we could look at
wider class of paths, typically allowing shortcuts
as paths, or introducing general homotopies in the
path category, which is possible because we can en-
code those inside the category of pHDA. Another
direction would be to continue the description of
this homotopy theory, to see if it corresponds to
some kind of Quillen’s model structure, or at least
to some weaker version (e.g., category of cofibrant
objects).
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