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Identifying Hazard-causing Parameters for

Automotive Driving Systems

Xiao-Yi Zhang, Paolo Arcaini, Fuyuki Ishikawa

Safety analysis of automotive systems is highly demanded, as failures in such systems can lead to dramatic

consequences. Usually, these systems are affected by some variabilities, including the production parame-

ters (e.g., the car power, or the braking force) and environmental parameters (e.g., dry or slippery road).

These variabilities may drastically affect the system performance and hence the safety guarantees. In this

paper, we propose an approach to explore the relation of the variabilities in automotive systems with the

overall safety. Specifically, we take Spectra-Based Fault Localization (SBFL), a technique in the domain of

software engineering as a baseline, and adapt it to the context of automotive driving systems based on the

fuzzification of each system parameter. Through our approach, we can better understand which parameters

can be the factors in causing system hazards. Our approach has been experimented on a Simulink model

provided by our industrial partner. Critical factors that related to the hazard were identified and explained.

This paper is a summary of the work published in the proceeding of ICECCS ’19.

1 Introduction

Cyber-physical systems (CPS), integrating both

computational modules and physical phenomena,

have been extensively developed recently. In our

project [2], driven by our industrial collaboration

with an automotive company, we consider auto-

motive systems (having different levels of automa-

tion). Errors in Cyber-Physical Systems (CPS), es-

pecially in automotive driving systems, may lead to

disruptive economic and social damages. There-

fore, once some failures (e.g., collisions) are de-

tected during the simulation of an automotive driv-

ing model. Then, making a hazard analysis to trace

the most unsafe component is essential. However,

due to the complexity of the structure of automo-

tive systems, tracing the hazard-causing compo-
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nents is more challenging. Specifically, the follow-

ing issues should be addressed:

1. how to characterize the system components

whose output could be continuous values;

2. how to quantify the system hazard;

3. how to calculate the proneness of each system

component in causing a hazard.

In this paper, we adapt Spectra Based Fault Lo-

calization (SBFL) [4], a typical technique in the

domain of software debugging to the context of au-

tomotive systems. SBFL aims to find the compo-

nents suspicious to cause program failures based

on the execution information of a given test suite.

Taking the advantages of SBFL, we propose an ap-

proach to analyze the hazard of automotive systems

involving different variabilities.

Currently, simulation-based validation (as falsi-

fication) checks a single automotive product oper-

ated in some given environmental conditions under

some given driving inputs. Our work is inspired

by a real-life case study provided by our industrial



partner. It is a Simulink model of a vehicle col-

lision avoidance system, which is also adopted as

the benchmark in our case study. Our approach

assumes the targeted system can be modeled by

Simulink. Also, we take the model parameters,

which reflect the system variabilities (e.g., the car

power and the braking force), as the system com-

ponents to investigate.

Specifically, given the Simulink model of the sub-

ject system, on the one hand, we repeatedly simu-

late the system and, for each simulation instance,

we record the simulation data, including the values

of the investigated parameters and the hazard de-

gree, indicating the degree of violating the safety re-

quirement under consideration. On the other hand,

we discretize the domain of each system parame-

ter through fuzzification and describe each parti-

tion as a fuzzy set associated with a concept (e.g.

“large” and “very small”, etc.). Finally, based on

the simulation results and the characterization of

the system variabilities (i.e., parameters), we use a

“metric” of spectrum analysis of SBFL to assign a

hazard impact degree to each fuzzy set, indicating

the proneness of that fuzzy set of being a hazard

factor. From our analysis, we can infer which sys-

tem parameters are the factors in causing hazard

and why these parameters can cause the hazard.

This paper is a summary of our previous hazard

assessment framework published in ICECCS’19 [5].

Our approach is experimented on an industrial arti-

fact for automotive driving, and explainable results

about system hazards are obtained.

2 Problem Description

System model. Let M be the model of the

hybrid automotive system under analysis. We as-

sume that the components of M can be described

as a set of parameters P = {p1, . . . , pn}, in which

each parameter pi has its own definition domain

Di. M is configurable. That is to say, we can as-

sign each parameter p with a value v. If a concrete

value v is given to each parameter p, an executable

simulation instance, denoted by M(v1, . . . , vn) can

be constructed. Then, we can run M(v1, . . . , vn)

and obtain, as output, a signal over time o. Here,

we define a simulation instance t as the pair t =

⟨(v1, . . . , vn), o⟩.
Problem Statement. Given system model M

and the set of simulation instances T in which each

t ∈ T has already been executed, assume M is

subjected to hazard (i.e., some simulations t ∈ T

can cause system failures). Then, the fundamental

problem is:

How to identify and analyze the parameters p ∈ P

that are the major causes of system hazard?

3 Approach

Fuzzification of parameters. To character-

ize system parameters, the concept fuzzy set bor-

rowed from fuzzy logic is introduced. Consider-

ing a parameter p defined in the domain D, let

Fp = {fp
1 , f

p
2 , . . . , f

p
mp} denote the set of fuzzy sets

that describe certain concepts of p. Each fuzzy

set fp
i ∈ Fp is defined by a membership function.

Then, for each concrete value v of p, fp
i can assign

a membership degree within the range of [0, 1], i.e.,

fp
i : D → [0, 1], indicating the degree that v belongs

to fp
i .

Fuzzy-set-based coverage. Suppose we

have simulation instance t with parameter values

(v1, . . . , vn). Define the coverage of a specific pa-

rameter p with value v over simulation t as the vec-

tor Cp,t = [fp
1 (v), f

p
2 (v), . . . , f

p
mp(v)], where for each

fuzzy set fp
i we have fp

i ∈ Fp. Furthermore, de-

fine the term fuzzy-set-based coverage of the entire

model M over simulation t as Ct = {Cp,t|p ∈ P}.
In this way, given a specific simulation instance t,

we can quantify the degree each fuzzy set of each

system parameter covered by t.

Hazard degree. Considering a specified safety



requirement φ of M, the satisfaction of φ over a

given simulation t can be quantified as γφ(t) within

the interval [0, 1], indicating how strongly φ is sat-

isfied. Note that the concept of φ is borrowed from

the domain of system falsification [6]. Then, we

calculate the hazard degree of t, denoted by h(t), as

h(t) = 1− γφ(t). Given a simulation instance t, by

calculating the hazard degree h(t), we can measure

how close that the result of executing simulation

instance t to the occurence of system failures (i.e.,

the degree that t exposes the hazard).

Hazard assessment. Finally, we try to assign a

hazard impact score for each parameter p, indicat-

ing the relation of p to the hazard by means of the

hazard degree. The basic heuristic of our work is

similar to that of SBFL. Specifically, the ith fuzzy

set fp
i of parameter p is covered by more hazard-

causing simulation instances; then, it is likely that

fp
i is more likely to be the factor of system haz-

ard. To do this, we introduce the scoring metrics

from SBFL and extend it to our context. Given

the model M and the set of simulation instances

T , for each simulation t ∈ T , we know Ct and h(t).

Then, given a specific fuzzy set fp
i of parameter p,

i.e., fp
i ∈ Fp, we use

a
f
p
i

h =
∑
t∈T

(fp
i (v) · h(t)) (1)

to measure the degree that fp
i is covered by hazard-

causing executions. Similarly, concerning system

safety, use

a
f
p
i

s =
∑
t∈T

fp
i (v) · (1− h(t)) (2)

to measure the degree that fp
i is covered by non-

hazard executions.

Note that a
f
p
i

h and a
f
p
i

s represent the degrees that

fuzzy set fp
i of parameter p contributes to the haz-

ard and safety, respectively. Specifically, if t cov-

ers fuzzy set fp
i at fp

i (v) degree, then we con-

sider the term fp
i (v) · h(t) as the contribution of

fp
i to the hazard at t. Oppositely, we consider

the term fp
i (v) · (1 − h(t)) as the contribution of

表 1 System parameters

Name Unit Domain
T safe second [0, 5]

Radius tire meter [0.3, 0.37]
Power max kW [70, 130]
Torque max Nm [150, 450]
Weight kg [800, 1500]

(a) Production

Name Unit Domain
T init second [1, 5]
A back G [0.1, 1]
T behav second [0.5, 5]
V init km/h [20, 160]
R gear - [2.5, 10]
Ay init - [0, 0.5]
Myu road - [0.2, 1]

(b) Enviromental

fp
i to the safety at t. Then we sum fp

i (v) · h(t)
for each t to calculate a

f
p
i

h ; and, similarly, we sum

fp
i (v) · (1 − h(t)) for each t to calculate a

f
p
i

s . Fi-

nally, we use a metric, involving both a
f
p
i

s and a
f
p
i

h

(i.e., the Tarantula metric for SBFL [3]), to calcu-

late the final hazard impact score of the fuzzy set

fp
i , denoted by Φ(fp

i ):

Φ(fp) = afp

h /(afp

h + afp

s ) (3)

Output of our approach. After hazard assess-

ment, we rank all the fuzzy sets of all the parame-

ters according to their hazard impact scores Φ(fp
i )

in descending order and provide a rank list as the

output of our approach. In the rank list of fuzzy

sets, the fuzzy sets of parameters with higher ranks

can have a strong relationship with the hazards,

whereas those with lower ranks are less related to

the hazard.

4 Case Study

Model description. To examine the effective-

ness of our approach, we introduce the experimen-

tal results in [5]. The benchmark is a Simulink

model of a collision avoidance system of an au-

tomotive vehicle provided by our industrial part-

ner. In the basic situation, the vehicle drives on a

straight lane and spots an obstacle in front. When

the driver pushes the brake pedal, an active safety



図 1 The membership functions of the fuzzy

sets of parameter t safe

feature is triggered to decide whether and when to

shut down the engine if it is necessary to avoid an

accident. The system has both production parame-

ters related to the type of the car and environmen-

tal parameters related to the road condition and

initial behavior of the car. All the model parame-

ters and their types are listed in Table 1.

The initial distance between the car and the

obstacle is the product of the initial inter-vehicle

time T init and initial vehicle speed V init. Note

that, the inter-vehicle can also be a static obstacle.

Upon spotting the obstacle, the driver will push the

brake pedal after T behav, and the active safety

feature will shut down the engine after T safe.

The evasive backward acceleration is A back, and

the ratio between engine RPM and wheel RPM

is R gear. The vehicle has tires with a radius

equal to Radius tire, an engine with the maxi-

mum horsepower and torque equal to Power max

and Torque max, respectively, and weights Weight.

Myu road describes the friction of the road, and

Ay init is the initial lateral force.

Fuzzification of the systems parameters.

For this benchmark model, since we do not have

extra domain knowledge, for each parameter p

having domain D=[dl, du] (see Table 1), we de-

fined seven triangular fuzzy sets fp
VS , fp

S , fp
SS ,

fp
M , fp

SL, fp
L and fp

VL, indicating the concepts of

“Very Small”, “Small”, “Slight Small”, “Medium”,

“Slight Large”, “Large”, and “Very Large”. A tri-

angular fuzzy set fp
i is defined by a lower bound

Si, an upper bound Si, and a kernel center Ki

with Si < Ki < Si and fp
i (Si) = fp

i (Si) = 0

and f(Ki) = 1. Then, the seven fuzzy sets de-

termine a regular fuzzy partition [1], i.e., they have

equidistributed kernel centers K1 . . .K7, with Ki =

Si−1 = Si+1 for i ∈ {2, . . . , 6}, K1=dl, and K7=du.

For example, for parameter T safe having domain

[0, 5], f T safe
S (1) = 0.8 and f T safe

SS (1) = 0.2.

Definition of hazard degree. The basic safety

requirement φ of this model is described as follows:

“The car should stop before dTh meters from the ob-

stacle and, if not possible, it should stop as soon as

possible before the obstacle.” The robustness sat-

isfaction γφ gives a quantitative characterization

of the satisfaction/violation of φ. The robustness

value of a simulation t is defined as follows:

γφ(t) =


0 mindis(ot) = 0

dTh/3+mindis(ot)

4dTh/3
0 < mindis(ot) < dTh

1 mindis(ot) ≥ dTh

(4)

where mindis computes the minimum distance in

the output signal. In (4), dTh is the threshold

of the safe distance. If the minimum distance is

larger than or equal to dTh , then t is considered

as completely safety; in the experiments, dTh has

been set to 30. If mindis(ot) reaches 0, it indi-

cates that the collision occurred during simulation

and the robustness value will be 0. Finally, if

0 < mindis(ot) < dTh , it means that the collision

did not occur, but the vehicle was not completely

safe during the simulation. In order to distinguish

the cases of complete collision and close to collision,

we set the minimal robustness γφ of close to colli-

sion to 0.25. Then, we calculate the hazard degree

of t by h(t) = 1 − γφ(t) as discussed above. Note

that γφ is normalized within [0, 1].

Result and Analysis. For the case study, we

run 10000 independent simulations and collected

the results in T . Then, we calculated the hazard

impact score for each fuzzy set of each parameter

(see Eq. (3)). The results are shown in Table 2.

The result is the rank list of different fuzzy sets of



表 2 Hazard Impact Score – Ranked list R of parameters fuzzy sets

Rank Parameter Fuzzy set Rank Parameter Fuzzy set

1 T init VS 16 T behav SL

2 A back VS 17 Power max SL

3 V init VS 18 R gear SL

4 T safe VL 19 T safe M

5 T safe L 20 R gear L

6 Weight VS ... ... ...

7 V init S 76 V init SL

8 T safe SL 77 T init SS

9 T behav VL 78 V init VL

10 T behav L 79 V init L

11 T init S 80 T safe VS

12 Power max VL 81 T init M

13 Power max L 82 T init SL

14 A back S 83 T init VL

15 Weight S 84 T init L

different system parameters presented in Table 2.

From these results, we can get an overall picture

of the potential factors leading to the hazard of

collision. For different parameters and fuzzy sets,

hazard impact scores are also different. For ex-

ample, fuzzy set f T init
VS (i.e., very small values of

T init) ranks the first, indicating that when the

initial inter-vehicle distance is “very small”, it is

more likely that the hazard (i.e., the collision) oc-

curs. In addition to this, from the rank list of fuzzy

sets, we can observe that the collision may be po-

tentially caused also by the low ability of backward

acceleration (i.e., when A back belongs to f A back
VS ),

the very small initial velocity (i.e., V init belongs

to f V init
VS ), and the long time needed by the safety

equipment to activate (i.e., T safe belongs to f T safe
VL

or f T safe
L ).

5 Conclusion

In this paper, we introduce an approach to iden-

tify hazard-causing system parameters for automo-

tive driving systems. Our approach relies on a set

of system simulations and attaches a hazard im-

pact score to each system parameter. Then we

can assess and explain the system hazard better

based on the rank list according to these hazard

impact scores. Our approach is based on a lighted-

weighted technique, Spectrum-Based Fault Local-

ization (SBFL), to deal with the complex struc-

ture of automotive systems. Meanwhile, we intro-

duce fuzzy sets to characterize the various system

parameters, which makes our results more under-

standable and explainable. On the other hand, our

work generalizes the SBFL technique itself to the

domain automotive systems, which improves its ap-

plicability.
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