
日本ソフトウェア科学会第 37回大会 (2020年度)講演論文集

Simultaneously Searching and Solving Multiple

Avoidable Collisions for Testing Autonomous

Driving Systems – Extended abstract

Alessandro Calò, Paolo Arcaini, Shaukat Ali, Florian Hauer, Fuyuki Ishikawa
The oracle problem is a key issue in testing Autonomous Driving Systems (ADS): when a collision is found,

it is not always clear whether the ADS is responsible for it. Our recent search-based testing approach

offers a solution to this problem by defining a collision as avoidable if a differently configured ADS would

have avoided it. This approach searches for both collision scenarios and the ADS configurations capable

of avoiding them. However, its main problem is that the ADS configurations generated for avoiding some

collisions are not suitable for preventing other ones. Therefore, it does not provide any guidance to automo-

tive engineers for improving the safety of the ADS. To this end, we propose a new search-based approach

to generate configurations of the ADS that can avoid as many different types of collisions as possible. We

present two versions of the approach, which differ in the way of searching for collisions and alternative con-

figurations. The approaches have been experimented on the path planner component of an ADS provided

by our industry partner. This is the extended abstract of [8].

This is the extended abstract of paper [8].

1 Introduction

An Autonomous Driving System (ADS) in an

integral part of autonomous cars, responsible for

planning and executing a safe and comfortable path

to a destination. Naturally, ensuring that an ADS

always plans and executes a safe path avoiding a

collision is critical. Search-based testing (SBT)

is a popular approach to test an ADS under di-

verse environmental conditions, to ensure that dur-

ing autonomous driving the ADS will not gener-

ate and execute paths that will lead to a colli-

Alessandro Calò, Technical University of Munich,

Germany.

Paolo Arcaini, National Institute of Informatics,

Japan.

Shaukat Ali, Simula Research Laboratory, Norway.

Florian Hauer, Technical University of Munich,

Germany.

Fuyuki Ishikawa, National Institute of Informatics,

Japan.

sion [4] [5] [6] [2] [13] [9].

Irrespective of the type of testing approach, test-

ing of an ADS faces the oracle problem [1] [3]. For

example, if testing reveals a system execution in

which the ego car (i.e., the car running the ADS)

collides, it is not always apparent whether the

ego car should be held responsible for it, and,

even if not, whether it could have behaved dif-

ferently in order to avoid it. Although some

guidelines [12] [10] [11] have been proposed to define

whether or not the ego car is responsible for a col-

lision, they cannot be used to assess whether the

ego car could avoid the collision with a different

behaviour.

We recently proposed a more practical approach

in [7]. It exploits the fact that ADSs are usually

configurable and different ADS configurations lead

to slightly different behaviours. In [7], a collision is

defined to be avoidable if the ADS configured in a

different way does not collide in the exact same sce-

nario. The alternative configuration is said to solve

the collision, and it is referred to as its solution.

In [7], we also proposed a search-based approach

(called the combined approach) in order to detect

avoidable collisions.

The main problem of the combined approach is

that the solution (i.e., the alternative configura-

tion) found for a particular collision may be too

specific, i.e., it may not solve other collisions that

have been proven to be avoidable with different con-

figurations. In this paper, in order to assess this, we

have performed an experiment using the results we

obtained in [7]: we run the path planner over all the

found collisions using all the found alternative con-

figurations. We discovered that the solutions found

for one kind of collision can solve from 46.07% to

68.00% of other types of collisions. Therefore, the

solutions found by the combined approach tend to

overfit a particular collision type and are not too

useful for re-engineering the path planner.

2 Proposed approaches

Starting from the needs of our industry partner,

we understood that it would be desirable to find a

single configuration that solves multiple collisions

to better help the developers to improve the sys-

tem. Following this research direction, we propose

two approaches that aim at finding configurations

which avoid as many collisions as possible. Both

approaches continue to be based on evolutionary

algorithms, as was done for the combined approach

in [7].

2. 1 Single-stage approach

The first approach, named single-stage approach

(SSA), is the natural generalization of the combined

approach and aims at finding, at the same time, dif-

ferent collisions that can be avoided by the same al-

ternative configuration. The first objective of SSA

aims at finding alternative configurations that are

not too different from the original one. The ra-

tionale is that the current system configuration is

already very well-thought-out by the experts, and

so it should not be changed too much, in order to

avoid to obtain weird behaviors of the car.

At the same time, the approach searches for col-

lisions over n different search spaces. For each

search space S, we define an objective function that

assesses whether an avoidable collision has been

found in S, or how close we are from finding it.

We identify two ways to consider these different

objective functions:

1. SSAMO : they are kept separate, each one

constituting an objective of the multi-objective

problem (so, SSAMO is an (n+1)-objective

problem);

2. SSAAO : we define an objective function that

aggregates the objectives for all the different

search spaces (so, SSAAO is a 2-objective prob-

lem). We propose two ways to define this func-

tion:

(a) SSAAO max : the fitness value is given

by the worst objective value across all the

search spaces;

(b) SSAAO sum : the fitness value is given

by the sum of all objective values of all

the search spaces.

2. 2 Two-stage approach

The search space of SSA is very large, being this

given by the combination of the n search spaces for

the different scenarios and of the alternative config-

uration; therefore, SSA may suffer from scalability

issues. We then propose another approach, named

two-stage approach (TSA), which aims at achieving

more scalability by decomposing the task in two

stages. In the first stage, n combined searches (i.e.,

applications of the combined approach from [7]) are

conducted for n search spaces in order to find n

avoidable collisions. In the second stage, a single

search is performed to find a configuration that si-

表 1 Number of runs (out of 30) which avoid

j = 1, . . . , 7 types of collision

Approach
collision types (j)

1 2 3 4 5 6 7

SSAAO max 0 0 0 0 0 0 0

SSAAO sum 8 4 0 0 0 0 0

SSAMO 9 20 1 0 0 0 0

TSAmin 0 0 0 5 13 8 4

TSAmax 0 0 0 5 12 9 4

multaneously solves all of them.

3 Experimental results

We run the two proposed approaches over the

combination of 7 different search spaces (identify-

ing 7 types of scenarios). Experimental results are

reported in Table 1. It shows in how many runs

(out of 30) each proposed approach solved j col-

lisions (j = 1, . . . , 7) of different types (i.e., from

different search spaces), with the same alternative

configuration; note that each column represents an

amount of collision types. The last column rep-

resents the best case, in which all seven avoidable

collisions are solved. For example, SSAMO solves

two collisions (of two different scenarios) in 20 runs.

3. 1 SSAAO

Regarding the SSA, the first strategy consisted

in aggregating the danger differences across all the

scenarios, and two methods were investigated. The

first was to consider only the worst objective across

all the search spaces (SSAAO max). This method

was not effective at generating any favorable solu-

tions within the allocated time budget. It is likely

that such a conservative approach is simply not

suitable to handle such a complex problem in a

timely manner. Indeed, since the fitness focuses

exclusively on the worst objective value, the search

does not improve any other ones.

The second method consists in aggregating all

objective values of all search spaces (SSAAO sum).

This way, the search is given more information

about improvements in all 7 search spaces. This

worked better in the short term, because it defined

a more “greedy” behavior, which was capable of

finding solutions for 2 scenarios in 4 cases.

3. 2 SSAMO

The second strategy consisted in assigning each

search space to an individual search objective

(SSAMO). This proved to be better, being able

to find the solution for at least one collision of a

search space in all 30 executions.

However, these results are still not acceptable for

our aim of solving multiple collisions with a single

alternative configuration: there should be at least

a few cases solving the majority of them. Looking

ahead at the results of the TSA, we see that this is

possible.

3. 3 TSA

Being composed of two separate stages, the TSA

requires the selection of results from the first stage,

which will be given as input to the second one.

At the first stage, the selection chooses a single

solution from the Pareto front, out of potentially

many. Two straightforward selection criteria were

employed: taking the solution which minimizes the

configuration difference and the one which maxi-

mizes it. The first one represents the collision which

is avoidable with the configuration closest to the

original one, therefore being potentially the easiest

one to solve. It will be denoted as TSAmin . The

second one represents the collision that requires the

biggest change in weights to be avoided, therefore

being potentially the most difficult one to solve. It

will be denoted as TSAmax . From the results in

Table 1, we observe that the TSA is much more

effective than the SSA, as it is always able to solve

at least 4 collisions. From these results, it seems

that there is no significant difference between the

two selection criteria.

Acknowledgments

P. Arcaini and F. Ishikawa are supported by ER-

ATO HASUO Metamathematics for Systems De-

sign Project (No. JPMJER1603), JST. Funding

Reference number: 10.13039/501100009024 ER-

ATO. We thank our industry partner Mazda for

providing the software used as the target in our

work and discussing principles in testing and im-

proving complex real-world automotive systems.

The provided software is a prototype constructed

for the purpose of evaluating new testing methods

and its quality has no relation with the quality of

Mazda products. Shaukat Ali is supported by the

Co-evolver project (No. 286898/F20) funded by the

Research Council of Norway under the FRIPRO

program.

参 考 文 献

[1] Barr, E. T., Harman, M., McMinn, P., Shahbaz,

M., and Yoo, S.: The Oracle Problem in Software

Testing: A Survey, IEEE Transactions on Software

Engineering, Vol. 41, No. 5(2015), pp. 507–525.

[2] Ben Abdessalem, R., Panichella, A., Nejati,

S., Briand, L. C., and Stifter, T.: Testing Au-

tonomous Cars for Feature Interaction Failures Us-

ing Many-objective Search, Proceedings of the 33rd

ACM/IEEE International Conference on Auto-

mated Software Engineering, ASE 2018, New York,

NY, USA, ACM, 2018, pp. 143–154.

[3] Briand, L., Nejati, S., Sabetzadeh, M., and Bian-

culli, D.: Testing the Untestable: Model Testing of

Complex Software-Intensive Systems, Proceedings

of the 38th International Conference on Software

Engineering Companion, ICSE ’16, New York, NY,

USA, Association for Computing Machinery, 2016,

pp. 789–792.

[4] Bühler, O. and Wegener, J.: Evolutionary func-

tional testing of an automated parking system, Pro-

ceedings of the International Conference on Com-

puter, Communication and Control Technologies

(CCCT) and the 9th. International Conference

on Information Systems Analysis and Synthesis

(ISAS), 2003.

[5] Bühler, O. and Wegener, J.: Evolutionary func-

tional testing of a vehicle brake assistant system, 6th
Metaheuristics International Conference, Vienna,

Austria, 2005.

[6] Bühler, O. and Wegener, J.: Evolutionary func-

tional testing, Computers & Operations Research,

Vol. 35, No. 10(2008), pp. 3144–3160.

[7] Calò, A., Arcaini, P., Ali, S., Hauer, F., and

Ishikawa, F.: Generating Avoidable Collision Sce-

narios for Testing Autonomous Driving Systems,

2020 IEEE 13th International Conference on Soft-

ware Testing, Validation and Verification (ICST),

2020, pp. 375–386.

[8] Calò, A., Arcaini, P., Ali, S., Hauer, F., and

Ishikawa, F.: Simultaneously Searching and Solv-

ing Multiple Avoidable Collisions for Testing Au-

tonomous Driving Systems, Proceedings of the 2020

Genetic and Evolutionary Computation Confer-

ence, GECCO ’20, New York, NY, USA, Asso-

ciation for Computing Machinery, 2020, pp. 1055–

1063.

[9] Hauer, F., Pretschner, A., and Holzmüller, B.:

Fitness Functions for Testing Automated and Au-

tonomous Driving Systems, International Confer-

ence on Computer Safety, Reliability, and Security,

Springer, 2019, pp. 69–84.

[10] Nister, D., Lee, H.-L., Ng, J., and Wang, Y.:

The Safety Force Field.

[11] Rizaldi, A., Keinholz, J., Huber, M., Feldle, J.,

Immler, F., Althoff, M., Hilgendorf, E., and Nipkow,

T.: Formalising and Monitoring Traffic Rules for

Autonomous Vehicles in Isabelle/HOL, Integrated

Formal Methods, Polikarpova, N. and Schneider,

S.(eds.), Cham, Springer International Publishing,

2017, pp. 50–66.

[12] Shalev-Shwartz, S., Shammah, S., and Shashua,

A.: On a Formal Model of Safe and Scalable Self-

driving Cars, CoRR, Vol. abs/1708.06374(2017).

[13] Vos, T. E., Lindlar, F. F., Wilmes, B., Windisch,

A., Baars, A. I., Kruse, P. M., Gross, H., and We-

gener, J.: Evolutionary functional black-box testing

in an industrial setting, Software Quality Journal,

Vol. 21, No. 2(2013), pp. 259–288.

