
日本ソフトウェア科学会第 36 回大会 (2019 年度) 講演論文集

A Stack Hybridization for Meta-hybrid

Just-in-time Compilation

Yusuke Izawa Hidehiko Masuhara Tomoyuki Aotani Youyou Cong

Meta-interpreter-based language implementation frameworks, such as RPython and Truffle/Graal, are con-

venient tool for implementing state-of-the-art virtual machines. Those frameworks are classified into trace-

based and method- (or ast-) based strategies. RPython uses a trace-based policy to compile straight

execution paths, while Truffle/Graal leverages method invocation to compile entire method bodies. Each

approach has its own advantages and disadvantages. The trace-based strategy is good at compiling pro-

grams with many branching possibilities and able to reduce the size of compiled code, but it is weak at

programs with varying control-flow. The method-based strategy is robust with the latter type of programs

but it needs thorough method-inlining management to achieve excellent performance.

To take advantage of both strategies, we propose a meta-hybrid compilation technique to integrate

trace- and method-based compilations, as well as a proof-of-concept implementation called BacCaml. To

achieve this goal, we develop a stack hybridization mechanism which makes it possible to coordinate trace-

and method-based meta JIT compilation. In the implementation, we extend RPython’s architecture and

introduced a special syntax for realizing this system in a single interpreter definition.

1 Introduction

Meta-interpreter-based language implementation

frameworks are getting more and more popular as

they allow language developers to leverage conve-

nient components such as a just-in-time (JIT) com-

piler and garbage collectors. Many programming

languages, such as Python [3] [11], Ruby [14] [10],

R [9], and Erlang [6], have been implemented with

language implementation frameworks, and each of

implementations achieves good performance as well

as ahead-of-time compilation.

Language mplementation frameworks can be

classified into two compilation approaches from the

viewpoint of compilation units. RPython [3] [4],

a language implementation framework as part of

the PyPy [3] project, adopts tracing compila-

tion, requiring bytecode interpreters and utiliz-

∗ This is an unrefereed paper. Copyrights belong to

the Author(s). An erlier version of the paper was

presented at the MoreVM’19 workshop.

Yusuke Izawa, Hidehiko Masuhara, Tomoyuki Aotani,

Youyou Cong, Tokyo Institute of Technology, Dept.

of Mathematical and Computing Science.

ing straight execution paths commonly executed

loops. In contrast, Truffle/Graal [16] [15] choose

method-based approach, rewriting abstract-syntax-

tree (ast) nodes and applying partial evaluation to

enhance run-time performance.

Each strategy has its own pros and cons. The

trace-based strategy is particularly good at com-

piling programs with branching possibilities, which

are common in dynamically typed languages. How-

ever, it performs poorly in the case of compiling

Fibonacci like programs [6], where the execution

path actually taken at run-time is often different

from the one trace for compilation. We call this the

path divergence problem. On the other hand, the

method-based strategy is so robust that we can ap-

ply it for a variety of programs. However, it needs

careful function-inlining to achieve excellent run-

time performance.

To take advantage of both compilation strategies,

we propose a language implementation framework

where the language designer writes a single meta-

interpreter definition; the framework compiles a

part of programs in either compilation strategy, and

the run-time can switch execution between code

fragments compiled by both strategies. The key

technique in our proposal is stack hybridization, as

the two strategies require the meta-interpreter to

use stack frames in different ways.

In this paper, we describe how to take advantage

of both meta compilation strategies and our design

choice to implement our meta-hybrid JIT compiler

which we call BacCaml.

2 Background

Before presenting the implementation of our

meta-hybrid compiler, we briefly review tracing and

meta-tracing compilation. We also explain the path

divergence problem, a performance degradation in

tracing JIT compilers.

2. 1 Tracing Compilation

A tracing optimization was firstly investigated by

Dynamo project [1], and its technique is adopted to

implement JIT compilers for dynamic languages,

e.g. TraceMonkey JavaScript vm [5] and SPUR, a

tracing JIT compiler for CIL [2].

Generally, tracing JIT compilation is separated

into following phases:

• Profiling : The profiler detects commonly exe-

cuted loops (hot loop). Typically, this is done

by counts how many times a backward jump

instruction is executed, and if the number is

greater than a threshold, the path is consid-

ered as a hot loop.

• Tracing : The interpreter records all executed

operations as an intermediate representation

(ir). Therefore function calls in hot loops are

automatically inlined.

• Code generation: The compiler optimizes

the trace in several ways, e.g. common-

subexpression elimination, dead-code elimina-

tion, and constant folding, and compiles it into

native code.

• Execution: After the trace has been compiled

to native code, it is executed when the inter-

preter runs the hot code once again.

Among all possible branches, only actually exe-

cuted one is selected. To make sure that the condi-

tion of tracing and execution are the same, a special

instruction (guard) is placed at every possible point

(e.g. if statements) that goes to another direction.

The guard checks whether the original condition is

still valid. If the condition is false, the execution in

the machine code is quit and continues to execute

by falling back to the interpreter.

2. 2 Meta-Tracing Compilation

BacCaml is based on RPython’s architecture.

Before describing the implementation details, let

us give an overview of RPython’s meta-tracing JIT

compilation.

RPython, a subset of Python, is a tool-chain for

creating programming languages with a trace-based

JIT compiler. RPython’s trace-based JIT compiler

traces the execution of an user-defined, interpreter

instead of tracing the program that an interpreter

executes. It requires an user to implement a byte-

code compiler and an interpreter definition for the

bytecode.

In Figure 1, we show an example of a user-defined

interpreter. The example uses two annotations,

jit_merge_point and can_enter_jit. By adding

special annotations to an user-defined interpreter

as shown in Figure 1, language implementers can

make their vm more efficient. The key annota-

tions that RPython provides are jit_merge_point

and can_enter_jit. We put jit_merge_point

at the top of a dispatch loop to indicate it.

can_enter_jit at the point which a back-edge in-

struction can be occurred. Furthermore, we have

to tell the compiler whether the variables are “red”

or “green”. “red” means that a variable is rele-

vant to the result of a calculation, hence red-colored

variables are recorded in resulting traces. “green”

variables which are not related to the result, are

executed when tracing the execution.

In the profiling phase, the profiler monitors the

program counter at can_enter_jit, and counts

how many times a back-edge instruction (e.g. jump

from 204 to 20) is occurred. When the counter gets

over the threshold, the JIT compiler goes into the

tracing phase. Basically, the tracer records or ex-

ecutes instructions the user-defined interpreter ex-

ecuted. In this tracing phase, only “green” vari-

ables (such as bytecode, and pc) are executed and

other “red” variables are recorded. The result-

ing traces are optimized and converted into native

code. When control reaches again, it goes to the

compiled code.

2. 3 The Path Divergence Problem

The tracing JIT compilers have weakness in com-

piling a particular kind of programs [6], which we

1 def push(stack , sp, v):

2 stack[sp] = v

3 return sp + 1

4

5 def pop(stack , sp):

6 v = stack[sp - 1]

7 return v, sp - 1

8

9 def interp(bytecode):

10 stack = []; sp = 0; pc = 0

11 while True:

12 jit_merge_point(

13 reds=['stack ', 'sp'],

14 greens =['bytecode ','pc'])

15 inst = bytecode[pc]

16 if inst == ADD:

17 v2, sp = pop(stack , sp)

18 v1, sp = pop(stack , sp)

19 sp = push(stack , sp, v1 + v2)

20 elif inst == JUMP_IF:

21 pc += 1

22 addr = bytecode[pc]

23 if addr < pc: # backward jump

24 can_enter_jit(

25 reds=['stack ', 'sp'],

26 greens =['bytecode ','pc'])

27 pc = addr

28

Fig. 1: An example interpreter definition written

in RPython.

call the path divergence problem. The problem is

observed as frequent guard failures (and compila-

tion of the subsequent traces) when it runs such

kind of programs. Since it spends most of time for

JIT compilation, the entire execution can be slower

than an interpreted execution.

Programs that cause the path divergence prob-

lem often take different execution paths when they

are executed. Functions that have multiple non-tail

recursive calls, e.g., Fibonacci, are examples.

Let us look at the problem with a Fibonacci func-

tion whose control flow graph is shown in Figure 2.

Each node in the graph is a basic block. Since trac-

ing JIT compilers †1 basically inline function calls,

†1 As explained above, meta-tracing JIT compilers

effectively compile traces of the base program by

tracing the meta-interpreter. Therefore we discuss

the problem in a context when a tracing compiler

handles a base program.

int fib(int n) { if (n <= 1)

return 1;

} else {

int res1 = fib(n ‐ 1);

int res2 = fib(n ‐ 2);

return res1 + res2; }

B

C

D

E

A

A

CB

E D

Fig. 2: The Fibonacci function and its control

flow.

the nodes end with a function call is connected to

the entry of the function. Also, the nodes end with

a return statement is connected to the next basic

blocks of its caller, which can be more than one.

Tracing compilers rely on the fact that many

program executions contain a subsequence (i.e., a

sequence of control flow nodes) that appear fre-

quently in the entire execution. However, the ex-

ecution of Fibonacci rarely contain such a subse-

quence. This is because the branching nodes in the

graph, namely A, B and E in the graph, take one

of two following nodes almost the same probability.

As a result, no matter what path the tracing com-

piler chooses, the next execution of the compiled

trace will likely to cause guard failure in its middle

of execution.

3 Meta-hybrid JIT Compilation Frame-

work

We propose a meta-hybrid JIT compilation

framework. It is a meta-compiler framework since

the language developer merely needs to write a sin-

gle interpreter definition to enable JIT compilation.

It is hybrid as it can compile both an execution

trace of a base program (trace compliation) and a

function (or a method) of the base program (method

compilation). The compiled code from two types of

compilation can work together in a single execution.

Base Language Program

Base Language Interpreter

Method-based
Compiler

Trace Specializer

BacCaml

Profiler

Hybrid JIT Compiler

Trace-based
Compiler

Fig. 3: The architecture of BacCaml

We implemented BacCaml based on the Min-

Caml [13] compiler, which is a subset of ML pro-

gramming language. It is implemented in OCaml

and consists of about 2000 lines of code, yet the

compiled code runs as fast as GCC or OCamlOpt.

Since RPython’s implementation is huge and highly

complex, we don’t extend it and instead create a

proof-of-concept implementation to show our re-

search idea.

Figure 3 overviews the structure of our meta-

hybrid JIT compiler. A base language is a language

that a language implementer is going to create. A

base language interpreter is written in BacCaml.

The key idea that enables meta-hybrid compilation

in a single interpreter definition is stack hybridiza-

tion. Specifically we use a user-defined stack and

a stack of the host language in the definitions of

call and return. A base language program is run

on the interpreter. The implementation language,

BacCaml, consists of following components:

• Profilier : It profiles a run-time information of

the interpreter and detects which compilation

strategy (method- or trace-based) is preferred.

Furthermore, it chooses a compiled trace to

jump to.

• Hybrid JIT Compiler : This compiler is based

on a trace-based compiler. It consists of a

trace-based compiler and a method-based com-

piler. Both compilers have a tracer, imple-

mented as an interpreter for BacCaml, to track

the execution of a base language interpreter.

A trace-based compiler compiles a straight line

of the execution of a base language interpreter.

On the other hand, a method-based compiler is

constructed as an extension of a tracing com-

piler.

• Trace Specializer : It performs optimization of

resulting traces and compiles them into native

code.

Figure 4 gives an overview of BacCaml’s vm gen-

eration and compilation steps. First, a language

implementer writes a base language interpreter us-

ing our meta-hybrid JIT compiler called BacCaml.

Next, a base language vm with a hybrid JIT com-

piler is generated. When a base language program

is running on the vm, BacCaml’s profiler moni-

tors the execution, and detects which parts are

frequently executed. Our compilation strategy is

simple. We start by applying trace-based compila-

tion and executing resulting traces. If there are

frequently occurrence of guard failure, the com-

piler switches to method-based compilation. It also

finds the method with the path divergence problem

and applies method-based compilation for that pro-

gram.

3. 1 Method JIT Compilation by Tracing

In this section, we provide the details of method

JIT compilation based on the tracing JIT compila-

tion.

To take advantage of trace- and method-based

compilation strategies and to solve the performance

degradation problem on tracing JITs, we need to

determine the true path of the base program and de-

crease the number of occurring guard failures. For

this reason, we implement our method-JIT compi-

lation by changing the following features of tracing

JIT compilation:

• Tracing entry / exit point

• Conditional branches

• Function calls

• Loops

Tracing JIT compilers [1] [5] generally compile

loops in the base program, so they start tracing at

the top of a loop and finish when execution returns

to the entry point. To assemble the whole body of a

function, we modify this behavior to trace from the

top of a method body until a return instruction

is reached. When handling a conditional branch, a

Program P

Base Language

Base Language Interpreter

Trace-based
Compiler

Method-based
Compiler

native

Loop Method

native

runtime code gen.

Meta-hybrid JIT Compiler

Base Langauge Interpreter

data flow

control flow

VM Generation

Runtime

Hybrid JIT Compiler

Fig. 4: Overview of BacCaml’s VM generation and compilation steps.

tracing JIT compiler converts the code into a guard

instruction and collect the instructions that are ex-

ecuted. In a method JIT compiler, however, we

must compile both branches of conditionals. To

do this, we must return to the branch point, and

trace the other side as well. Additionally, whereas

a tracing JIT inlines function calls, a method JIT

emits a call instruction and continues tracing. For

loops, we first transform the base program to use

tail-calls, and compile loops as normal functions.

4 Stack Hybridization

In this section, we detail the stack hybridization

mechanism for enabling meta-hybrid compilation in

a single interpreter, along with the pseudo functions

and macros for defining a meta-interpreter under

this mechanism.

When defining a meta-interpreter, there are two

possible ways to manage the call stack: the one is

to use the call stack of the language of the inter-

preter (we hereafter call the host-stack), and the

other is to use a stack data structure manipulated

by the interpreter (we call the user-stack).

We discovered that a suitable definition for each

call and return is different in trace- and method-

based compilation. Figure 5 shows a definition of

an interpreter using a user-defined stack (left) and

the stack of a host-language (right). The differ-

ence between the two strategies is in the way they

manage a return address, return value and callee

address. As can be seen in Figure 5, all of them are

managed by a user-defined stack in the implemen-

tation on the left. In the other, however, the return

value is only managed by a user-defined stack, and

other variables are managed by the stack of host-

language.

An implication of this difference is that, the user-

defined stack strategy is well suited for a trace-

based compilation. This is because we can easily in-

line a function calling when we apply a trace-based

compilation for a user-defined interpreter with this

strategy. The host-language’s stack stack strategy,

on the other hand, is suitable for a method-based

compilation. This is because we are able to find

a function call, leave it to a resulting trace, and

continue to trace successors.

To support both trace- and method-based compi-

1 /* user -defined stack strategy */

2 case CALL:

3 // fetch a callee address

4 addr = bytecode[pc]

5 // push a return address

6 stack[sp++] = pc + 1;

7 pc = addr;

8 break;

9

10 case RETURN:

11 ret_value = stack[sp --];

12 ret_address = stack[sp --];

13 stack[sp] = ret_value;

14 // jump to the return address

15 pc = ret_address;

16 break;

17

1 /* host -language 's stack strategy */

2 case CALL:

3 // fetching a callee address

4 addr = bytecode[pc];

5 // launch the interpreter

6 ret_value = interp(addr);

7 stack[sp] = ret_value;

8 break;

9

10 case RETURN:

11 // returning a value

12 return stack[sp --];

13

Fig. 5: An example interpreter definition for call and return using pseudo codes.

1 case CALL:

2 addr = bytecode[pc];

3 if (is_mj ()) {

4 // telling this call is made by

method -based compilation

5 stack[sp++] = MJ;

6 ret_value = interp(addr);

7 stack[sp++] = ret_value;

8 } else {

9 // telling this call is made by

trace -based compilation

10 stack[sp++] = TJ;

11 stack[sp++] = pc + 1;

12 pc = addr;

13 }

14 break;

15

1 case RETURN:

2 ret_value = stack.pop();

3 mode = stack.pop();

4 // detecting compilation mode

5 @if (mode == MJ) {

6 return ret_value;

7 } else {

8 addr = stack.pop();

9 stack.push(ret_value);

10 pc = addr;

11 }

12 break;

13

Fig. 6: An interpreter definition using stack hybridization.

lation strategies in a single interpreter, we propose

the stack hybridization mechanism that manages

both the host- and user-stacks in the interpreter,

and use one of them based on the current compi-

lation strategy. Roughly speaking, the interpreter

handles call and return operations in the following

ways.

• When it calls a function under the trace-based

compilation, it uses the user-stack; i.e., it saves

the context information in the stack data struc-

ture, and iterates the interpreter loop. Ad-

ditionally, it leaves a flag “user-stack” in the

user-stack.

• When it calls a function under the method-

based compilation, it uses the host-stack; i.e.,

it calls the interpreter function in the host lan-

guage. Additionally, it leaves a flag “host-

stack” in the user-stack.

• When it returns from a function, it first checks

a flag in the user-stack. If the flag is “user-

stack”, it restores the context information from

the user-stack. Otherwise, it returns from the

interpreter function; i.e., using the host-stack.

In order to implement those behaviors, as shown

in Figure 6, we introduce a pseudo function (is_mj)

and special variables (TJ and MJ). When we apply

a trace-based compilation, is_mj returns true and

the code in the then clause is traced. In the case

of method-based compilation, is_mj returns false

and the else clause is traced.

The special variables are used to detect compila-

tion modes dynamically in return. This enables to

cooperate resulting traces made from both method-

and trace-based compilations. For example, there

are two traces, one (A) is made from a trace-based

compilation and the other (B) is from a method-

based compilation. When a function call from A to

B is occurred, a variable TJ is pushed to the user-

defined stack. When executing a return instruc-

tion in B, the control executes a suitable definition

by writing as shown in the right of Figure 6.

5 Preliminary Benchmark Test

Since the work is still ongoing, we organize what

we have done and not done before showing data.

Current, we have a complete implementation of

method-based just-in-time compilation. We also

have an implementation of trace-based compilation

be able to trace, compile and execute dynamically,

but we have not yet figure out how to make control.

In this section, we present the microbench-

mark results of method-based compilation and

interpreter-only execution here. We wrote a simple

interpreter in BacCaml to execute small programs,

sum and fib:

• fib: The function computes the Fibonacci

number 30 and 40. It has two non-tail recur-

sive function calls in its body which causes the

path divergence problem.

• sum: The function computes the summation

from 1 to 30000. It has two non-tail recursive

function calls which do not cause the path di-

vergence problem.

In our environment, we ran every program 100

times. We ignored the first run. The experiment

was performed on a laptop with 2.70 GHz Interl(R)

Core(TM) i5 processor and 8 GB memory, using

Linux 5.2.5-arch1-1-ARCH.

In Figure 7, we present the results of our exper-

iment. Note that we use shared library for just-in-

time compilation, therefore it has many overheads

in compilation time.

The results show that fib actually causes the path

divergence problem, and our method-based com-

pilation strategy potentialy solves the problem by

combining trace- and method-based compilation at

run-time. This is evidenced by the fast that fib(40)

is about 4 times slower than MinCaml, and that the

interpreter-only execution occurre stack overflow.

fib(30) is also about twice faster than interpreter,

but still about 100 times slower than MinCaml in

total. This implies that using GCC at run-time

is quite slow, hence we need in-memory compiling

and executing systems in the future.

In contrast, sum in method-based compilation

is tremendously slower than interpreter only ex-

ecution and MinCaml. From this result, we can

conclude that method-based compilation isn’t suit-

able for programs with simple control flow, and we

should apply trace-based compilation for such pro-

grams.

6 Related work

6. 1 Truffle / Graal

Truffle/Graal [16] [15] is an ast-based meta just-

in-time compiler. Graal is a JIT compiler for Java,

and Truffle is a framework for Graal. Building an

interpreter with Truffle framework, Graal can ap-

ply partial evaluation for the language. RPython

is based on a bytecode-based interpreter definition,

but Truffle requires an ast-based interpreter def-

inition. Truffle is also successful in implementing

many languages, like Ruby, Python, and R.

6. 2 IonMonkey

IonMonkey [8] is a Firefox’s mature JavaScript

engine. Mozilla created method JIT and tracing

JIT compilers for JavaScript. It adopted a hy-

brid approach that method JIT was used in initial

speeding up and tracing JIT is lately applied for

hot loops.

6. 3 Android Hybrid JIT

Pérez, et al. [12] cooperate a method JIT com-

piler and a tracing JIT compiler on the Android

Dalvik VM. The hybrid JIT compiler achieved a

high performance by sharing profiling and compi-

lation information.

6. 4 Pyrlang

Pyralng [6] is an Erlang virtual machine with a

tracing JIT compiler by applying the meta-tracing

fib(30) fib(40)

0

50

100

150

200

250

N
/
A

6.
1
3

4.
5
6

92

0.
88

2
06

E
x
ec

u
ti

o
n

ti
m

e
re

la
ti

ve
to

M
in

C
am

l

exec. in trace

compilation

interpreter

sum(30000)

0

1

2

3

·104

5
54

28
,9

45
1,

1
2
1

Fig. 7: Preliminary benchmark results of BacCaml’s method JIT and interpreter only execution. Each

bar shows the execution time of method-based JIT compilation and interpreter-only execution, related

to MinCaml. exec. in trace is a execution time in the compiled code. compilation shows how much

time dynamic compilation consumes in run-time. interpreter means all instructions are executed on the

interpreter. N/A means stack overflow occurred. Lower is better in this chart.

JIT compiler. Similar to us they have tried to ap-

proach to path divergence problem and introduced

a pattern-matching-tracing. It is identical to Py-

cket’s two-state-tracing; the basic idea is to place

JIT merger points on the destination of conditional

branches to distinguish different paths as different

traces.

6. 5 Trace-based Java JIT Compiler

Inoue, et al. [7] presented the tracing JIT com-

piler. Opposite to our approach, they implemented

by extending Java method JIT compiler by the

compilation scope. They concluded that trac-

ing JIT could reduce the method-invocation over-

head, however, incurred additional runtime over-

head than method JIT in their approach.

7 Conclusion and Future work

We have shown thequniques for realiizing trace-

and method-based compilation as a meta JIT com-

piler. In such techniques, the stack hybridization is

a key idea for enabling hybrid compilation in a sin-

gle interpreter definition. Our preliminary bench-

marks indicate that combining both compilation

approaches will possibly solve the path divergence

problem and improve the performance of tracing

and meta-tracing compilations.

We are currently implementing gurad failure of

BacCaml. As mentioned before, we use dynamic

loading for just-in-time compilation. The challeng-

ing is that, when we apply tracing compilation, con-

trol should jump to compiled code, but dynamic

loading, which we use for JIT compilation, does

not provide any API to jump to native code. Once

this is solved, we have to achieve run-time combi-

nation of both compilation strategies by using the

stack hybridization, and test variety of programs

on BacCaml to validate our work.

References

[1] Bala, V., Duesterwald, E., and Banerjia, S.: Dy-

namo: a transparent dynamic optimization system,

PLDI ’00: Proceedings of the ACM SIGPLAN 2000

Conference on Programming Language Design and

Implementation, 2000.

[2] Bebenita, M., Brandner, F., Fahndrich, M., Lo-

gozzo, F., Schulte, W., Tillmann, N., and Ven-

ter, H.: SPUR: A Trace-based JIT Compiler for

CIL, Proceedings of the ACM International Con-

ference on Object Oriented Programming Systems

Languages and Applications, OOPSLA ’10, New

York, NY, USA, ACM, 2010, pp. 708–725.

[3] Bolz, C. F., Cuni, A., Fijalkowski, M., and

Rigo, A.: Tracing the meta-level: PyPy’s tracing

JIT compiler, Proceedings of the 4th workshop on

the Implementation, Compilation, Optimization of

Object-Oriented Languages and Programming Sys-

tems - ICOOOLPS ’09, (2009), pp. 18–25.

[4] Bolz, C. F. and Tratt, L.: The impact of meta-

tracing on VM design and implementation, Science

of Computer Programming, (2015).

[5] Gal, A., Orendorff, J., Ruderman, J., Smith,

E. W., Reitmaier, R., Bebenita, M., Chang, M.,

Franz, M., Eich, B., Shaver, M., Anderson, D., Man-

delin, D., Haghighat, M. R., Kaplan, B., Hoare, G.,

and Zbarsky, B.: Trace-based just-in-time type spe-

cialization for dynamic languages, ACM SIGPLAN

Notices, Vol. 44, No. 6(2009), pp. 465.

[6] Huang, R., Masuhara, H., and Aotani, T.: Im-

proving Sequential Performance of Erlang Based on

a Meta-tracing Just-In-Time Compiler, The 17th

Symposium on Trends in Functional Programming

- TFP 2016, 2016.

[7] Inoue, H., Hayashizaki, H., Wu, P., and

Nakatani, T.: A trace-based Java JIT compiler

retrofitted from a method-based compiler, Proceed-

ings - International Symposium on Code Genera-

tion and Optimization, CGO 2011, (2011), pp. 246–

256.

[8] Mozilla: IonMonkey, the next generation

JavaScript JIT for SpiderMonkey.

[9] Oracle Lab.: A high-performance implemen-

tation of the R programming language, built on

GraalVM.

[10] Oracle Lab.: A high performance implementa-

tion of the Ruby programming language.

[11] Oracle Labs.: Graal/Truffle-based implementa-

tion of Python., 2018.

[12] Perez, G. A., Kao, C.-M., Chung, Y.-C., and

Hsu, W.-C.: A hybrid just-in-time compiler for an-

droid, Proceedings of the 2012 international confer-

ence on Compilers, architectures and synthesis for

embedded systems - CASES ’12, (2012), pp. 41.

[13] Sumii, E.: MinCaml: A Simple and Effi-

cient Compiler for a Minimal Functional Language,

FDPE: Workshop on Functional and Declaritive

Programming in Education, (2005), pp. 27–38.

[14] Topaz Project: A high performance ruby, writ-

ten in RPython.

[15] Würthinger, T., Wimmer, C., Humer, C., Wöß,

A., Stadler, L., Seaton, C., Duboscq, G., Simon, D.,

and Grimmer, M.: Practical partial evaluation for

high-performance dynamic language runtimes, Pro-

ceedings of the 38th ACM SIGPLAN Conference

on Programming Language Design and Implemen-

tation, Vol. 52, No. 6(2017), pp. 662–676.

[16] Würthinger, T., Wöß, A., Stadler, L., Duboscq,

G., Simon, D., and Wimmer, C.: Self-optimizing

AST interpreters, Proceedings of the 8th symposium

on Dynamic languages - DLS ’12, (2012), pp. 73.

