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Compositional Z: Confluence Proofs for

Permutative Conversion

Koji Nakazawa∗1 Ken-etsu Fujita∗2

This paper gives new confluence proofs for several lambda calculi with permutation-like reduction, including

lambda calculi corresponding to intuitionistic and classical natural deduction with disjunction and permu-

tative conversions, and a lambda calculus with explicit substitution. In lambda calculi with permutative

conversion, näıve parallel reduction techinique does not work, and (if we consider untyped terms, and hence

we do not use strong normalization) traditional notion of residuals is required as Ando pointed out. This

paper shows that the difficulties can be avoided by extending the technique proposed by Dehornoy and

van Oostrom, called the Z theorem: existence of a mapping on terms with the Z property concludes the

confluence. Since it is hard to directly define a mapping with the Z property for the lambda calculi with

permutative conversions, this paper extends the Z theorem to compositional functions, called compositional

Z, and shows that we can adopt it to the calculi.

1 Introduction

The permutative conversion was introduced by

Prawitz [7] as one of proof normalization processes

for the natural deduction with disjunctions and ex-

istential quantifiers. It permutes order of applica-

tions of elimination rules, and then normal proofs

have some nice properties such as the subformula

property. The rules of the permutative conversion

are quite simple, but the combination of it with

the β-reduction makes confluence proofs compli-

cated if we do not depend on strong normalization

as Ando discussed in [2]. First, we cannot näıvely

adopt the parallel reduction technique of Tait and

Martin-Löf, since a parallel reduction defined in an

ordinary way does not have the diamond property.

Therefore, Ando generalized the parallel reduction

with the notion of the segment trees. Secondly, it

is also difficult to adopt Takahashi’s technique with

complete development [8], and Ando used tradi-
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tional notion of the residuals [3] to define the com-

plete development.

This paper shows that we can avoid these trou-

bles by adapting another proof technique for con-

fluence proposed by Dehornoy and van Oostrom [4],

called the Z theorem: if there is a mapping which

satisfies the Z property, then the reduction system

is confluent. A major candidate for the mapping

with the Z property is the complete development

used in Takahashi’s proof, and hence defining such

a mapping is still hard. In this paper, we see that

a mapping satisfying the Z property can be easily

defined as a composition of two complete develop-

ments with respect to the β-reduction and the per-

mutative conversion, respectively, and the Z theo-

rem is extended for compositional functions, called

the compositional Z. The compositional Z can be

adopted to several λ-calculi with permutative con-

version such as the λ-calculus extended with dis-

junctions, the λµ-calculus with disjunctions, and a

simple λ-calculus with explicit substitutions.

2 Compositional Z

First, we summarize Dehornoy and van Oost-

rom’s Z theorem, and then extending it for com-

positional functions, called the compositional Z. It
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gives a sufficient condition for that a compositional

function satisfies the Z property, and it enables us

to consider a reduction system by dividing into two

parts to prove confluence.

Definition 2.1 ((Weak) Z property). Let (A, → )

be an abstract rewriting system, and ↠ be the re-

flexive transitive closure of → . Let →x be another

relation on A, and ↠x be its reflexive transitive

closure.

1. A mapping f satisfies the weak Z property for

→ by →x if a→ b implies b↠x f(a)↠x f(b) for any

a, b ∈ A.

2. A mapping f satisfies the Z property for → if

it satisfies the weak Z property by → itself.

When f satisfies the (weak) Z property, we also

say that f is (weakly) Z.

It becomes clear why we call it the Z property,

when the condition is indicated by the following

diagram.

Theorem 2.2 (Z theorem [4] [5]). If there exists a

mapping satisfying the Z property for an abstract

rewriting system (A, → ), then (A, → ) is conflu-

ent.

The following is easy to see by the diagram in

Figure 1 and Theorem 2.2.

Theorem 2.3 (Compositional Z). Let (A, → ) be

an abstract rewriting system, and → be →1 ∪ →2 .

If there exist mappings f1, f2 : A → A such that

(a) f1 is Z for →1

(b) a→1 b implies f2(a)↠ f2(b)

(c) a↠ f2(a) holds for any a ∈ Im(f1)

(d) f2 ◦ f1 is weakly Z for →2 by → ,

then f2 ◦ f1 is Z for (A, → ), and hence (A, → ) is

confluent.

Note that the condition (d) is weaker than the Z

property of f2 ◦ f1 for (A, → ) since we only have

to consider the one-step →2 .

One easy example of the compositional Z is the

βη-reduction on the untyped λ-calculus (although

it can be directly proved by the Z theorem as in

[5]). Let →1 = →η , →2 = →β , and f1 and f2

be the usual complete developments of η and β, re-

spectively. Then, it is easy to see the conditions of

Theorem 2.3 hold. The point is that we can forget

the other reduction in the definition of each com-

plete development.

Furthermore, we have another sufficient condi-

tion for the Z property of compositional functions

as follows. It is a special case of Theorem 2.3, where

f1(a) = f1(b) holds for any a→1 b, and all of the

examples in this paper (except for βη above) of the

application of compositional Z are in this case.

Corollary 2.4. Let (A, → ) be an abstract rewrit-

ing system, and → be →1 ∪ →2 . Suppose that

there exist mappings f1, f2 : A → A such that

(a) a→1 b implies f1(a) = f1(b)

(b) a↠1 f1(a) for any a

(c) a↠ f2(a) holds for any a ∈ Im(f1)

(d) f2 ◦ f1 is weakly Z for →2 by → .

Then, f2 ◦ f1 is Z for (A, → ), and hence (A, → )

is confluent.

Proof. It is easy to see from Theorem 2.3. The

condition (a) in Theorem 2.3 comes from the new

conditions (a) and (b), and (b) in Theorem 2.3 is

not necessary since we have f2(f1(a)) = f2(f1(b))

for any a→1 b.

This can be seen as a generalization of the Z

property modulo, proposed by Accattoli and Kesner

[1]. It concludes confluence of reduction system on

quotient set A/∼ for an equivalence relation ∼ by

finding mapping which is well-defined on ∼ and is

weakly Z for the reduction on A by the reduction

relation modulo ∼. If we consider ∼ as the first

reduction relation →1 , and define f1(a) as a fixed

representative of the equivalence class including a,

then → means the reduction relation →2 modulo

∼, and Corollary 2.4 says the same thing as the Z

property modulo.

3 Intuitionistic natural deduction with

disjunction

3. 1 Calculus

The following is the definition of the (untyped)

terms (denoted by M , N ,. . . ), eliminators (denoted

by e,. . . ), and the reduction rules for the first-order

natural deduction, where a ranges over the first-

order variables, and t over the first-order terms.

We call the system λNJ.

M ::= x | λx.M | ⟨M,M⟩ | ι1M | ι2M
| λa.M | ⟨M, t⟩ | Me

e ::= M | π1 | π2 | [x.M, x.M ] | t | [xa.M ]



3

Fig. 1 Proof of Theorem 2.3

(λx.M)N →M [x := N ] (βI)

⟨M1,M2⟩πi →Mi (βC)

(ιiM)[x1.N1, x2.N2]→Ni[xi := M ] (βD)

(λa.M)t→M [a := t] (βA)

⟨M, t⟩[xa.N ]→N [x, a := M, t] (βE)

M [x1.N1, x2.N2]e→M [x1.N1e, x2.N2e] (πD)

M [xa.N ]e→M [xa.Ne] (πE)

As usual, the juxtaposition notation Me is sup-

posed to be left associative, and hence Me1e2 de-

notes (Me1)e2. The last two rules (πD) and (πE)

are called permutative conversion, or just permuta-

tion. In these π-rules, we assume capture-avoiding

conditions, that is, e must not contain either x1 or

x2 freely in the rule (πD) and e must not contain

either x and a freely in the rule (πD). In this paper,

we consider untyped terms including ill-typed ones

such as (ι1M)N and (λx.M)[x1.N1, x2.N2]. They

are just stuck since there is no applicable reduction

rule.

In fact, we can discuss essence of our idea in the

following simple subcalculus λ−
NJ, which has proof

terms only for implications and “unary” disjunc-

tions. The discussion in this paper can be extended

to λNJ in a straightforward way.

Definition 3.1 (λ−
NJ). The terms of λ−

NJ are defined

as follows.

M ::= x | λx.M | ιM | Me (terms)

e ::= M | [x.M ] (eliminators)

The reduction rules for λ−
NJ are the following.

(λx.M)N →M [x := N ] (βI)

(ιM)[x.N ]→N [x := M ] (βD)

M [x.N ]e→M [x.Ne] (π)

The relation → on the terms is the compatible clo-

sure of these reduction rules, and ↠ is its reflexive

transitive closure.

3. 2 Problems on confluence proof

In confluence proofs for λ−
NJ, the permutation

raises some difficulties, whichever we adopt the tra-

ditional parallel reduction or the original Z theorem

(Theorem 2.2). A common reason can be explained

by the example in Figure 2. The term M3 is the

least join point from M1 and M2. Hence, if we

define a parallel reduction satisfying the diamond

property, it has to contain M2 ↠π M3 as one-step,

whereas in the reduction sequence

M2 = M [x.N [y.L]]e→π M [x.N [y.L]e]

→π M [x.N [y.Le]] = M3

the π-redex N [y.L]e of the second step does not oc-

cur in M2, and it is not a simple adaptation of the

usual parallel reduction. This example also shows

that, if we want to find a mapping f satisfying the Z

property, we have to define f(M0) as M1 ↠ f(M0)

and M2 ↠ f(M0) hold, and then M3 ↠ f(M0). It

means that we have to do the permutation com-

pletely in f . This observation leads the following

definition.

Definition 3.2. The complete permutation M@e

is defined as follows.

M [x.N ]@e = M [x.N@e]

M@e = Me (M ̸= M ′[x.N ′])

Then, we expect that a complete development

with the complete permutation can be defined as

follows and it is Z:

x• = x M•
E = M•

(λx.M)• = λx.M• [x.N ]•E = [x.N•].

(ιM)• = ιM•

(λx.M)N• = M•[x := N•]

(ιM)[x.N ]• = N•[x := M•]

Me• = M•@e•E (o.w.)

However, this näıve definition does not work. Con-

sider N1 = (ι(x[y.y]))[z.z]w→π (ι(x[y.y]))[z.zw] =
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Fig. 2 Critical pair induced by the π-reduction

N2. Then, we have

N1
• = (x[y.y])@w = x[y.yw]

N2
• = (zw)•[z := x[y.y]] = x[y.y]w,

and hence this mapping is not Z since N•
1 ↠N2

•

does not hold. The reason of the failure is that the

π-redex (x[y.y])w produced by the β-reduction is

also reduced in N1
•.

3. 3 Confluence by compositional Z

The compositional Z can be used to solve the

problem.

Definition 3.3. The mappings MP and ePE are in-

ductively defined as follows.

xP = x MP
E = MP

(λx.M)P = λx.MP [x.N ]PE = [x.NP]

(ιM)P = ιMP

(Me)P = MP@ePE
The mappings MB and eBE are defined as follows.

xB = x MB
E = MB

(λx.M)B = λx.MB [x.N ]BE = [x.NB]

(ιM)B = ιMB

((λx.M)N)B = MB[x := NB]

((ιM)[x.N ])B = NB[x := MB]

(Me)B = MBeBE (o.w.)

We define MPB = (MP)
B
.

Then, we can use Corollary 2.4 to show the con-

fluence of λ−
NJ with the help of the following lemmas.

Lemma 3.4. 1. Me↠π M@e.

2. M@[x.N ]@e = M@[x.N@e].

3. (M@e)[x := N ]↠π M [x := N ]@e[x := N ].

4. M →M ′ implies M@e↠M ′@e.

5. e→ e′ implies M@e↠M@e′.

Proof. 1. By induction on M . The only nontrivial

case is the following, where M = P [x.Q].

P [x.Q]e→π P [x.Qe]

↠π P [x.Q@e] (I.H.).

2. By induction on M . The only nontrivial case

is the following, where M = P [y.Q].

(P [y.Q])@[x.N ]@e = P [y.Q@[x.N ]@e]

= P [y.Q@[x.N@e]] (I.H.)

= (P [y.Q])@[x.N@e].

3. By induction on M . We use θ to denote the

substitution [x := N ]. Interesting cases are the fol-

lowing.

(Case M = P [y.Q]) We have the following.

(M@e)θ = (Pθ)[y.(Q@e)θ]

↠π (Pθ)[y.Qθ@eθ] (I.H.)

= (Pθ[y.Qθ])@eθ

= Mθ@eθ.

(Case M = x and N = P [y.Q]) We have the

following.

(M@e)θ = (xe)θ

= P [y.Q]eθ

→π P [y.Q(eθ)]

↠π P [y.Q@eθ] (1)

= xθ@eθ.

4. By induction on M →M ′. The only nontrivial

cases are the following.

(Case (ιP )[x.Q]→Q[x := P ]) We suppose that x

does not occur in e.

(ιP )[x.Q]@e = (ιP )[x.Q@e]

→ (Q@e)[x := P ]

↠π Q[x := P ]@e (3).

(Case P [x.Q][y.R]→P [x.Q[y.R]])

P [x.Q][y.R]@e = P [x.Q][y.R@e]

→π P [x.Q[y.R@e]]

= P [x.Q[y.R]]@e.

5. By induction on e→ e′.

Lemma 3.5. M →π N implies MP = NP.

Proof. By induction on →π . In the case of π-

redex, we have the following.

(P [x.Q]e)P = P P@[x.QP]@ePE
= P P@[x.QP@ePE] (3.4.2)

= (P [x.Qe])P.
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In the case of M = Pe and N = P ′e′, we have the

following.

(Pe)P = P P@ePE

= P ′P@e′
P
E (I.H.)

= P ′@e′
P
.

Lemma 3.6. The following hold for ⟨X, ξ⟩ ∈
{⟨P, π⟩, ⟨B, β⟩}.
1. MX[x := NX]↠ξ (M [x := N ])X.

2. MXeXE ↠ξ (Me)X.

Proof. 1. By induction and case analysis on M .

The only nontrivial cases are those where some re-

dexes are created by substitutions.

(X = P) The case where M = xe and N = P [y.Q]

is proved as follows.

MP[x := NP] = (P P@[y.QP])ePE[x := NP]

↠π (P P@[y.QP])(e[x := N ])PE (I.H.)

↠π P P@[y.QP]@(e[x := N ])PE (3.4.1)

= RHS

(X = B) The case where M = xP and N = λy.Q

is proved as follows.

MB[x := NB] = (λy.QB)P B[x := NB]

↠β (λy.QB)(P [x := N ])B (I.H.)

→β QB[y := (P [x := N ])B].

The case where M = x[y.P ] and N = ιQ is proved

as follows.

MB[x := NB] = (ιQB)[y.P B[x := NB]]

↠β (ιQB)[y.(P [x := N ])B] (I.H.)

→β (P [x := N ])B[y := QB].

2. We have MXeXE = (xeXE)[x := MX] =

(xe)X[x := MX]↠ξ (Me)X by 1.

Lemma 3.7. For any X ∈ {P,B}, if M →N holds,

then we have MX ↠NX.

Proof. (X = P) The case where M →π N immedi-

ately follows from Lemma 3.5. The case where M

is a β-redex is proved as follows.

((λx.P )Q)P = (λx.P P)QP

= P P[x := QP]

↠π (P [x := Q])P (3.6.1).

The case of Me→M ′e′ is proved by 4 and 5 of

Lemma 3.4.

(X = B) The only nontrivial case is the follow-

ing: M = (ιP )[x.Q][y.R], N = (ιP )[x.Q[y.R]],

and M →π N . In this case, we have MB =

QB[x := P B][y.RB] = (QB[y.RB])[x := P B] since

x does not occur freely in [y.RB], and NB =

(Q[y.R])B[x := P B]. Therefore, MB ↠β NB holds

by Lemma 3.6.

Theorem 3.8 (Confluence of λ−
NJ). λ−

NJ is conflu-

ent.

Proof. By Corollary 2.4, it is sufficient to prove the

following.

(a) M →π N implies MP = NP.

(b) M ↠MP holds for any M .

(c) M ↠MB holds for any M .

(d) M →β N implies N ↠MPB ↠NPB.

(a) is Lemma 3.5. (b) and (c) are straightforward

by induction on M . (d) MPB ↠NPB follows from

Lemma 3.7. For N ↠MPB, it is proved by induc-

tion on M →β N . The cases of β-redexes are easy

by the fact M ↠MPB for any M , which follows

from (b) and (c). The case where M = Pe and

N = P ′e′ is proved as follows.

P ′e′ ↠P ′PBe′
PB
E (I.H.)

↠ (P ′Pe′
P
E)

B
(3.6.2)

↠ (P ′P@e′
P
E)

B
(3.4.1, 3.7).

4 Classical natural deduction with dis-

junction

The idea in the previous section can be extended

to the Parigot’s λµ-calculus [6]. As Ando’s proof in

[2], the proof of its confluence requires some com-

plicated notions such as generalized parallel reduc-

tion, which is realized by means of the notion of

segment trees, and residuals of redexes to define

the complete development. The compositional Z

makes the proof much simpler.

Definition 4.1. The terms of λµ−
NK are the exten-

sion of those of λ−
NJ as follows.

M ::= · · · | µα.M | [α]M (terms)

The following is the additional reduction rule.

(µα.M)e→µα.M [α ⇐ e] (µ),

where the structural substitution M [α ⇐ e] is

obtained by recursively replacing subterms of the

form [α]M by [α]Me.

In the following, we use the notation M [α ⇐
e1, e2, · · · , en] to denote M [α ⇐ e1][α ⇐
e2] · · · [α ⇐ en]. This term is obtained by replacing

[α]N by [α]Ne1e2 · · · en.
Extending the complete permutation to λµ−

NK
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Fig. 3 Critical pair induced by the πµ-reduction

is not straightforward. First, we have to do µ-

reduction simultaneously in the complete permu-

tation because of the example in Figure 3. Here,

the right bottom arrow needs one µ-step followed

by some π-steps as

(µα.M [α ⇐ [x.N ]])e→µ µα.M [α ⇐ [x.N ], e]

↠π µα.M [α ⇐ [x.Ne]].

Note that the π-reduction in the second line holds

by π-reducing subterms of the form [α]P [x.N ]e in

M [α ⇐ [x.N ], e] to [α]P [x.Ne]. Secondly, the fol-

lowing näıve definition is not inductive on the size

of terms:

(µα.M)@e = µα.M [α ⇐ @e]

([α]M)[α ⇐ @e] = [α](M [α ⇐ @e]@e).

Hence, we need some generalization for the defini-

tion of the complete permutation with respect to

both π- and µ-reduction.

Definition 4.2. We use the following notation.

The metavariable ε ranges over eliminators or ◦ de-

noting “nothing”, and we define

Mε =

{
Me (ε = e)

M (ε = ◦).
α and ε denote finite sequences such as

α1, α2, · · · , αn and ε1, ε2, · · · , εn, respectively, and
• denotes the empty sequence.

We define M [α ⇐ @ε]@ε as Figure 4, where we

suppose that α and ε have the same length.

Then, we define M@e = M [• ⇐ @•]@e and

M [α ⇐ @ε] = M [α ⇐ @ε]@◦.
Note that, the following equations hold as we ex-

pect.

(M [x.N ])@e = M [x.N@e]

(µα.M)@e = µα.M [α ⇐ @e]

M@e = Me (o.w.)

Now, we can define a function with the Z prop-

erty by composing two functions in a similar way

to the case of λ−
NJ.

Definition 4.3. The mappings MP and ePE are in-

ductively defined as follows.

xP = x MP
E = MP

(λx.M)P = λx.MP [x.N ]PE = [x.NP]

(ιM)P = ιMP

([α]M)P = [α]MP

(µα.M)P = µα.MP

(Me)P = MP@ePE
The mappings MB and eBE are defined as follows.

xB = x MB
E = MB

(λx.M)B = λx.MB [x.N ]BE = [x.NB]

(ιM)B = ιMB

([α]M)B = [α]MB

(µα.M)B = µα.MB

((λx.M)N)B = MB[x := NB]

((ιM)[x.N ])B = NB[x := MB]

(Me)B = MBeBE (o.w.)

We define MPB = (MP)
B
.

Then, we can use Theorem 2.3 to show the con-

fluence of λµ−
NK with the help of several lemmas.

Theorem 4.4 (Confluence of λµ−
NK). λµ−

NK is con-

fluent.

Proof. By Corollary 2.4, it is sufficient to prove the

following.

(a) M →πµ N implies MP = NP

(b) M ↠MP holds for any M .

(c) M ↠MB holds for any M .

(d) M →β N implies N ↠MPB ↠NPB.

These are proved in a similar way to the case of

λ−
NJ.

5 Explicit substitutions

As another example of an application of the com-

positional Z, we show confluence of the simplest

calculus with explicit substitutions, in which the

propagation rules look like the permutation rules.

Definition 5.1 (λx). Terms of λx are defined as
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x[α ⇐ @ε]@ε = xε

(λx.M)[α ⇐ @ε]@ε = (λx.M [α ⇐ @ε]@◦)ε
(ιM)[α ⇐ @ε]@ε = (ιM [α ⇐ @ε]@◦)ε

(MN)[α ⇐ @ε]@ε = (M [α ⇐ @ε]@◦)(N [α ⇐ @ε]@◦)ε
(M [x.N ])[α ⇐ @ε]@ε = (M [α ⇐ @ε]@◦)[x.N [α ⇐ @ε]@ε]

(µβ.M)[α ⇐ @ε]@ε = µβ.M [α, β ⇐ @ε, ε]@◦
([αi]M)[α ⇐ @ε]@ε = ([αi]M [α ⇐ @ε]@εi)ε (αi ∈ α)

([β]M)[α ⇐ @ε]@ε = ([β]M [α ⇐ @ε]@◦)ε (β ̸∈ α)

Fig. 4 Definition of M [α ⇐ @ε]@ε

follows.

M ::= x | λx.M | MM | M⟨x := M⟩
In the term M⟨x := N⟩, the variable occurrences of
x in M are bound, and it is supposed that we can

freely rename bound variables as usual.

Reduction rules of λx are the following, where x

and y are distinct variables, and, in the rule (πabs),

x does not occur freely in N .

(λx.M)N →M⟨x := N⟩ (βx)

y⟨y := N⟩→N (πhit)

x⟨y := N⟩→N (πgc)

(λx.P )⟨y := N⟩→λx.P ⟨y := N⟩ (πabs)

(PQ)⟨y := N⟩→P ⟨y := N⟩Q⟨y := N⟩ (πapp)

The outline of the following proof with the com-

positional Z is almost the same as the case of λ−
NJ

and λµ−
NK. In this case, what corresponds complete

permutation (·)P is to change explicit substitutions

⟨x := M⟩ to meta substitutions [x := M ].

Definition 5.2. The mappings MP and MB are

defined as follows.

xP = x

(λx.M)P = λx.MP

(MN)P = MPNP

(M⟨x := N⟩)P = MP[x := NP]

xB = x

(λx.M)B = λx.MB

((λx.M)N)B = MB[x := NB]

(MN)B = MBNB (o.w.)

(M⟨x := N⟩)B = MB[x := NB]

Then, we define MPB = (MP)
B
.

In fact, the last equation of the definition of (·)B is

not used, because it is applied only to terms with-

out explicit substitutions in the following discus-

sion.

It is easy to see the following auxiliary lemmas.

Lemma 5.3. 1. M →π N implies MP = NP.

2. MP contains no explicit substitution.

3. If M contains no explicit substitution, then we

have MP = M .

4. If M contains no explicit substitution, then we

have M⟨x := N⟩↠π M [x := N ].

Proof. 1 is proved by induction on M →π N , and

2, 3, and 4 are by induction on M .

Lemma 5.4. 1. If M →N holds in λx, then we

have MP ↠β NP in the ordinary λ-calculus (with-

out explicit substitutions).

2. For M and N containing no explicit substitu-

tion, if M →β N holds in the ordinary λ-calculus,

then we have M ↠N in λx.

Proof. 1 is proved by induction on M →N , and 2

is by induction on M →β N .

On terms without explicit substitutions, the

mapping (·)B is the ordinary complete development,

and it has the Z property for the β-reduction in the

λ-calculus [5].

Now we can prove confluence of λx by the com-

positional Z.

Theorem 5.5 (Confluence of λx). λx is confluent.

Proof. By Corollary 2.4, it is sufficient to prove the

following.

(a) M →π N implies MP = NP

(b) M ↠MP holds for any M .

(c) M ↠MB holds for any M without explicit

substitutions.

(d) M →βx N implies N ↠MPB ↠NPB.

(a) is Lemma 5.3.1. (b) is easy by Lemma 5.3.4.
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(c) is also easy since we have

(λx.P )Q↠βx P ⟨x := Q⟩↠π P [x := Q]

by Lemma 5.3.4. (d) is proved by induction on

M →βx N . For N ↠MPB, the only nontrivial case

where P ⟨x := Q⟩→βx P
′⟨x := Q′⟩ is proved as fol-

lows.

P ′⟨x := Q′⟩↠P PB⟨x := QPB⟩ (I.H., (b), (c))

↠P PB[x := QPB] (5.3.4)

↠ (P P[x := QP])
B
,

where, for the last line, we can prove MB[x :=

NB]↠β (M [x := N ])B in the λ-calculus in a sim-

ilar way to Lemma 3.6.1, and hence we have

MB[x := NB]↠ (M [x := N ])B in λx by Lemma

5.4.2. The rest part of (d), MPB ↠NPB, is proved

as follows. Suppose that M →βx N holds, and we

have MP ↠β NP in the λ-calculus by Lemma 5.4.1.

Then, MPB ↠β NPB since (·)B is Z for β, and hence

MPB ↠NPB in λx.

6 Concluding remark

We have proposed an extension of Dehornoy and

van Oostrom’s Z theorem, called the compositional

Z. This idea can be widely applied to lambda cal-

culi with permutative conversions, including the λ-

and the λµ-calculi with disjunction and permuta-

tive conversion, and a simple variant of lambda cal-

culus with explicit substitutions, where the propa-

gation of the explicit substitutions is similar to the

permutation rules. In particular, the combination

of the β-reduction and the permutative conversions

makes the confluence proofs much difficult to de-

fine the parallel reduction or a mapping with the

Z property. We have seen that the latter is easily

defined as a compositional function, and hence the

compositional Z gives simple confluence proofs for

these calculi.

The compositional Z also gives a new possibility

toward modular (or gradual) proofs of confluence.

In general, it is hard to prove confluence by divid-

ing a reduction system into some parts because of

the non-modular character of confluence. The com-

positional Z enables us to reuse the Z property for

a subsystem, that is, for →1 , a subrelation of → ,

the Z property for →1 can be used to prove the Z

property for → by the compositional Z.
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