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Processing UnQL Graph Queries with Pregel

Le-Duc Tung, Chong Li, Xiaodong Meng, Zhenjiang Hu

Pregel is a programming model proposed by Google to process large graphs. It is inspired by the Bulk

Synchronous Parallel model by which the same computation instructions are applied to every vertex in

each iteration. However, Pregel is a so-called low-level model for end users, and it requires much effort on

writing efficient programs, even to well-known graph algorithms. Similar problems with the MapReduce

model have resulted in high-level query frameworks such as Hive or Pig on top of MapReduce. Taking

the same philosophy, in this paper, we propose a high-level framework on top of Pregel to allow execut-

ing queries and transformations over large graphs. We borrow UnQL, an SQL-like language over graphs,

as the interface language for our framework. UnQL queries are then automatically compiled into efficient

Pregel programs that can deal with large graphs. Experimental results with real-life graphs such as citation

networks, Amazon products and Youtube, show that our framework is efficient and scalable for large graphs.

1 Introduction

Data become more and more complex today.

Social networks such as Facebook, Twitter, and

LinkedIn now have billions of active users [19], and

new connections among users are increasing day by

day. A world-wide-web network might contain bil-

lions of websites and trillions of links among them,

where each of those websites does not conform to

any standard structure. No matter how complex

the data are, they may be naturally represented as

data graphs in which data are stored on edges and

nodes are object identities to glue those edges [1,4].

Data graphs as well as query languages over
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graphs have been studied over two and half

decades [24]. Almost graph queries are based on

regular expressions defined over the alphabet of

edge/node labels [5, 7, 9, 13], for example, conjunc-

tive queries, regular path queries, or conjunctive reg-

ular path queries. Besides, graph transformations

have also been studied, and it plays an important

role in model transformations [6, 11].

Recently, with the explosion of Big Data, graphs

become bigger and bigger. However, the sequential

graph processing library for UnQL (a well-known

SQL-like graph query language) can only deal with

graphs of maximum ten thousand nodes with good

scalability [5]. The scalability of GraphQL [10] is

also deemed as an open problem. Hence, it is neces-

sary to reconsider queries as well as transformations

for big graphs.

To tackle the problem of scalable processing,

Google proposed a novel model, named Pregel,

to process big graphs in a distributed way [15].

It was inspired by the Bulk-Synchronous Parallel

(BSP) model [21] whose computation consists of



a sequence of supersteps. The BSP model makes

reasoning about programs easier. Besides, during

each superstep, a common function is applied to

each vertex instead of a subgraph leads to a fault-

tolerant execution, which is very important to big

graph processing.

However, to our knowledge, there exists few

frameworks on top of Pregel that allow executing

graph queries and transformations. In [16], Nolé

et al. have tried to port a part of GXPath [13] to

Pregel. Krause et al. [12] have implemented a sub-

set of the transformation unit types supported by

the Henshin [2] model transformation tool.

This paper aims to propose a framework on top

of Pregel to allow graph queries and transforma-

tions. We borrow UnQL [5], an SQL-like language

over graphs, as the interface language. We propose

a systematic approach to automatically compile

UnQL queries into distributed Pregel programs. It

is worth to note that UnQL queries return data as

graphs and their syntax allows us to do both graph

queries and transformations.

Our contributions in this paper are as follows.

• We defined a domain-specific language (DSL)

based on structural recursion over graphs. This

DSL is a subset of UnCAL – the internal al-

gebra of UnQL – and it allows us to express

“vertical” graph computation along a path of

edge labels with branch conditions.

• We parallelized the DSL to obtain efficient and

scalable Pregel programs. This procedure are

automatically done by our framework and give

us space to do further optimizations.

• We defined rules to translate UnQL queries to

the DSL. We have sucessfully dealt with ba-

sic queries such as conjunctive queries, regular

path expression queries and conjuntive regular

path queries, as well as transformations based

on regular path expressions.

• We performed experiments on real data such

as citation networks, Youtube videos and Ama-

zon product datasets. Experimental results

showed that our framework has a good scala-

bility, and its performance may overtake Spark

SQL [3] – a new relation processing for big data

using HiveQL – if HiveQL queries contain a

large number of left outer joins.

This paper is organized as follows. Section 2 in-

troduces the data model and query language of our

framework. Our approach to process UnQL queries

with Pregel is proposed in Sec. 3, where we show

an internal algebra and how to parallelize the alge-

bra in Pregel. Section 4 shows an implementation

of our approach in GraphX (a open source library

written in Spark to process big graphs) and its ex-

perimental results. Related work is discussed in

Sec. 5. Sec. 6 concludes the paper.

2 Data Model and Query Language

2. 1 Data Model

Data is represented as rooted, directed edge-

labeled graphs. In this model, data are stored on

edge labels and each vertex has a unique identity.

A graph has one or multiple vertices designated as

roots. One could consider this model as an exten-

sion of tree-structured model. Figure 1 shows an

example of a rooted, directed labeled graph repre-

senting a citation network to store papers and their

citation relationships, where the black-box vertex

denotes the root of the graph.

Input graphs may be stored in a single big file or

in multiple separated files. Each file contains a set

of edges, each edge occupies one line of file. The

format for a line is

src_id is_root dest_id edge_label

where, src id and dst id are the ID of source and

destination vertices of the representing edge, re-

spectively. The field is root indicates that if the

source node is the root (value 1) or not (value 0).

The field edge label is the exact data (a string)



図 1 A Rooted, Directed Edge-Labeled Graph of Paper Citation Network.

we want to store on the edge.

2. 2 Query Language

The interface language of our framework is bor-

row from UnQL [5], an SQL-like language over

graphs. A query has a SELECT...WHERE... sur-

face.

Query ::= SELECT G WHERE BC1, . . . , BCn

The SELECT part is a graph called by variable,

or constructed either by graph constructors, or by

structural recursion functions.

G ::= $g

| {}
| {L : G}
| G1 ∪G2

| {G1, . . . , Gn}
| letrec sfun

f({L : $g}) = G1

. . .

in f(G1)

| (Query)
Variables are identifiable by their starting symbol

$. {} constructs a root-only graph, {a : G} con-

structs a graph by adding an edge with label L

pointing to the root of graph G, G1∪G2 unions two

graphs into one by adding two ϵ-edges from the new

root to the roots of G1 and G2, and {G1, . . . , Gn}
unions all graphs G1, . . . , Gn into one by using n

ϵ-edges. letrec sfun is used to define structural

recursion functions, and the in after is used to call

one defined function. More detail about definition

of structural recursion function is shown in Sec-

tion 3. 2. Query may be nested.

The WHERE part is a list of bind conditions and

boolean conditions for pattern matching. A boolean

condition is to compare if a label variable is equal

to a given value. A bind condition is used to match

a graph with a given pattern. A pattern is a graph

constructed by graph constructors where label L

may be a regular pattern path (RPP). A RPP is a

sequence of labels or wildcard “ ”.

BC ::= BindCond | BoolCond
BindCond ::= Pattern IN G

Pattern ::= {RPP:Pattern} | G
RPP ::= L | | RPP.RPP | RPP*

2. 3 Examples

The simplest query is a regular path query. As-

sume we want to return all papers’ title from a ci-

tation graph. The result is a graph with one root

and its outgoing edges are paper titles. Such query

is written as follows.

Q1 = SELECT $t

WHERE {Paper.Title.String:$t} IN $db

In UnQL queries, there always has a special vari-

able $db refering to the input graph. In the query



Q1, the variable $t is bound to each graph that fol-

lows by a path starting from a root in which the

concatenation of its edge labels satisfies the regular

expression Paper.Title.String. The result graph

is a union of graphs bound by $t.

We can reorganize returned data to construct a

new graph.

Q2 = SELECT {Article: ({Topic:$t} U $y)}
WHERE {Paper:$p} IN $db,

{Title.String:$t} IN $P,

{Year.Int:$y} IN $p

In Q2, we first bind variables $t and $y to the title

and the year of paper $p, respectively. After that,

it constructs, for each paper, a graph that has one

edge labeled Article pointing to a union of two

graphs: one has one edge labeled Topic pointing to

the graph $t, and the other is the graph $y.

We can define a conjunctive regular path query

by using conditions over edge labels as follows.

Q3 = SELECT $p

WHERE {Paper:$p} IN $db,

{Year.Int:{$y:{}}} IN $p,

$y = 2015

The query Q3 combines regular path expressions

and conditions over edge labels. This query returns

papers written in 2015.

We can also perform transformations over

graphs. For example, for each paper returned

by the query Q3, we relabel edges Conference to

Venue.

Q4 = SELECT

letrec sfun

c2v({Conference:$g}) = {Venue:c2v($g)}
c2v({$l:$g}) = {$l:c2v($g)}

in c2v($p)

WHERE {Paper:$p} IN $db,

{Year.Int:{$y:{}}} IN $p,

$y = 2015

Here, we use a structural recursive function c2v to

relabel edges Conference. The function c2v is de-

図 2 Overview of our Framework

fined with matching patterns. This function does

not change the structure of the input graph but

only modify the label of edges from Conference to

Venue.

3 Processing UnQL Queries

3. 1 Overview of Our Framework

Figure 2 shows the input, the output and the

major components of our framework. Details are

described in the following.

• The Desugar accepts an input UnQL query,

parses it and generates a specification following

the syntax of our Internal Algebra.

• The Internal Algebra is based on structural

recursion over graphs, and is a subset of Un-

CAL (an internal algebra of UnQL). There is

the absence of label variable comparisons, say,

$l1 = $l2, where $l1 and $l2 are two label vari-

ables belonging to two different recursive func-



tions. In that sense, our internal algebra uses

the pure structural recursion over graphs.

• The Parallelization generates Pregel pro-

grams from specifications written in the In-

ternal Algebra. Depending on different spec-

ifications, it will generate different evalua-

tion strategies. After that, it compiles such

strategies into a Pregel program that utilizes

parametrized Pregel algorithms. Optimization

rules such as Fusion, Tupling are implemented

in this component.

• The Parametrized Pregel Algorithms

consists of efficiently-made functions that are

used to evaluate strategies generated by the

Parallelization. These functions are Pregel al-

gorithms.

• The Pregel Program is the main program

that is generated by the Parallelization com-

ponent. Users run this program with an input

graph and the result is a new graph stored on

files having a format mentioned in Sec. 2. 1.

3. 2 Internal algebra

Figure 3 shows the syntax of our language. A

program starts with a header that specifies a com-

position of functions followed by a sequence of func-

tion declarations. Declarations are defined in the

way of pattern matching and its body is an expres-

sion. For a function f , its argument is in the form of

{l : $g} that is one of graph constructors presenting

a graph constructed by appending the edge labeled

l to the root of the graph $g. Note that, l can be

a real label a or a label variable $l. Declarations of

f are based on pattern matching for {l : $g}. Only

one f({$l : $g}) is allowed and must be located

after all other declarations of f({a : $g}). The dec-

laration f({$l : $g}) will apply for graphs that do

not match previous patterns.

The body of a declaration is an expression in-

cluding nine graph constructors, graph variables,

function applications and if then else conditions.

We require a strict form for function applications in

which only one graph variable is allowed as its ar-

gument, which avoids computations that may lead

to infinite loop. Due to the limitation of space, we

ignore the details of graph constructors. Readers

may refer to [5] for more information.

The semantics of our language is as follows.

Given a set of structural recursive functions (de-

fined by declarations), and a rooted edge-labeled

graph, the program returns a new rooted edge-

labeled graph by applying a transformation defined

by the composition of structural recursive func-

tions. Function composition is denoted by “ ◦ ”,
and, from its definition, we have (f2 ◦ f1)x =

f2 (f1 x). A declaration f({l : $g}) means, for

each edge labeled l and its following subgraph $g

in the input graph, we do some computations on

l and then apply the structural recursive functions

f on $g. Results returned by applying a function

f on adjacent edges are automatically combined

by the constructor ∪ as follows: f(G1 ∪ G2) =

f(G1) ∪ f(G2).

3. 3 Rules to transform query to the In-

ternal algebra

Translating SELECT...WHERE queries into our in-

ternal algebra consists of several steps. We need

to first desugar WHERE clause of queries in order to

have a list of uniformed bind conditions. After that

we can generate a dependency tree of graph vari-

ables and translate bind conditions into structural

recursion functions one by one recursively. At the

end, query on internal algebra is created by using

generated structural recursion functions.

3. 3. 1 Desugaring query

Conditions of WHERE clause of a query must be

reformatted to the form

{Rpp : Var} IN Var

before transforming into our Internal algebra.



prog ::= main f [ ◦ f ] where decl · · · decl { program }
decl ::= f({l : $g}) = t { structural recursive function }

t ::= {} | {l : t} | t ∪ t |&x := t |&y | () { graph constructors }
| t⊕ t | t@ t | cycle(t) { graph constructors }
| $g { graph variable }
| f($g) { function application }
| if bcond then t else t { if then else }

bcond ::= isempty(t) {an expression returns an empty graph not}
| bcond && bcond { AND condition }
| bcond || bcond { OR condition }
| !bcond { NOT condition }

l ::= a | $l { label (a ∈ String) and label variables }

図 3 Syntax of our DSL Language

Rule 1.

case WHERE {Rpp_1:Pat_1,
..., Rpp_n:Pat_n} IN Var

to WHERE {Rpp_1:Pat_1} IN Var,

...,

{Rpp_n:Pat_n} IN Var

This rule splits one bind condition into several bind

conditions if a bind condition includes more than

one pattern.

Rule 2.

case WHERE {Rpp_1:Pat_1,
..., Rpp_n:Pat_n} IN G

to WHERE G IN NewVar,

{Rpp_1:Pat_1} IN NewVar,

...,

{Rpp_n:Pat_n} IN NewVar

This rule is similar to Rule 1. When the graph G

to match is not a graph variable but more complex

one, then we create a graph variable to handle this

graph before pattern matching.

Rule 3.

case WHERE {Rpp:Pat} IN Var

to WHERE {Rpp:NewVar} IN Var,

Pat IN NewVar

This rule is used to flatten encapsulated patterns

into a list of singletons.

Rule 4.

case WHERE {} IN Var

to WHERE isempty(Var)

For matching an empty graph that has not label,

we need to use isempty command.

3. 3. 2 Constructing dependency tree

After desugaring where clause, we construe a de-

pendency tree of graph variables that are used by

the conditions. The root of the dependency tree

is the variable $db, which is also the root of in-

put graph. The children nodes of the root are the

suggraph variables defined by the conditions that

call $db. Recursively, the children nodes of each

of these nodes are the suggraph variables defined

by the conditions that call the variable of current

node. If a condition is applied on a graph variable

that was not defined by other binding condition,

then it will be dropped automatically.

3. 3. 3 Translating into structural recur-

sion

In this step, each binding condition is translated

into two structural recursion functions, where the

body of the functions is based on the condition,

and the functions are applied to the graph that is

bound to the condition. One of these structural

recursion functions, called fv , is used to return re-



sult graph, the other function, called fc, is used to

check if other conditions that are applied on sub-

graphs are all satisfied. We here also generate a

function, called fr , based on SELECT part to con-

struct queried graph using current graph and the

constructed graphs from the children nodes.

Rule A. For a bind condition {Label :

SVar} IN GVar, where SVar is a leaf in the depen-

dency tree and it is bound by a boolean condition

isempty(SVar), this bind condition is translated

to

fc(Label:SVar) = if (isempty(SVar))

then {SATISFIED:{}} else {}
fc(AnyVar:SVar) = {}
fv(Label:SVar) = if fc(Label:SVar)

then fr(SVar,{}) else {}
fv(AnyVar:SVar) = {}
with function call fv(GVar).

Rule B. For a bind condition {Label :

SVar} IN GVar, where SVar is a leaf in the depen-

dency tree it is not bound by any condition, this

bind condition is translated to

fc(Label:SVar) = {SATISFIED:{}}
fc(AnyVar:SVar) = {}
fv(Label:SVar) = fr(SVar,{})
fv(AnyVar:SVar) = {}
with function call fv(GVar).

Rule C. For a bind condition {Label :

SVar} IN GVar, where SVar is a node in the depen-

dency tree, and fv1 , . . . , fvn, fc1 , . . . , fcn are the

structural recursion functions translated from the

bind conditions of the children node/leaf of SVar,

the current bind condition is translated to

fc(Label:SVar) = if (fc1(SVar) &&

... && fcn(SVar))

then {SATISFIED:{}} else {}
fc(AnyVar:SVar) = {}
fv(Label:SVar) = if fc(Label:SVar)

then fr(SVar, fv1(SVar) U

... U fvn(SVar)) else {}

fv(AnyVar:SVar) = {}
with function call fv(GVar).

The top level structural recursion function is

called by the main program of our internal alge-

bra, and the definition of all structural recursion

functions are declared in the where clause of the

internal algebra.

3. 4 Parallelization of the Internal Alge-

bra in Pregel

The key idea to parallelize the internal algebra

is to transform the evaluation of the internal alge-

bra to an efficient algorithm in Pregel. Here, ef-

ficient algorithms refer to the ones satisfying the

constraints for Practical Pregel Algorithms in [26].

A Pregel algorithm might consist of one or many

supersteps. Sometimes we call it a Pregel phase.

We classify specifications written in the inter-

nal algebra into two classes: one with if then else

conditions and the other without if then else con-

ditions. Our approach is firstly finding an efficient

solution for specifications without if then else

conditions, and then using that solution to build

up an efficient solution for specifications with

if then else conditions.

3. 4. 1 Specifications without if then else

An effcient solution for specifications without

if then else conditions are proposed in [20], in

which each of such those specifications is evaluated

by three Pregel phases as follows.

eelim ◦ bulk ′
F (eπ) ◦mark{&fs}(e→)

where mark is a multi-step Pregel phase whose ver-

tex computation is defined by e→. bulk is an one-

step Pregel phase that applies the function eπ on

each edge. eelim is a multi-step Pregel phase to

eliminate ε-edges producing during the bulk com-

putation. Basically, eelim computes the transitive

closure of ε-edges. fs is the function between key-

words main and where, it denotes the starting

point or the main function of the specification. In



the case we have a composition of functions be-

tween main and where, say f1 ◦ f2 · · · ◦ fk, fs is

f1 in general. &fs denotes a marker built from the

function fs. F is a set of functions in the sequences

of function calls starting from fs. The function e→

defines a transition table in which inputs include a

function marker and an edge label, output is a set

of function markers that will be called in the body

of the input function. The function eπ accepts a

function marker and an edge label, and call the

appropriate pattern matching in the specification,

corresponding to the function name and the edge

label.

Example 1 The following query finds all

graphs following by a path expression ∗ .c, and

then transforms all edges labeled b in those graphs

into edges labeled d.

SELECT

letrec sfun

b2d({b:$g}) = {d:b2d($g)}
b2d({$l:$g}) = {$l:b2d($g)}

in {c:b2d($r)}
WHERE { *.c:$r} IN $db

To evaluate this query, we firstly translate it into

a specification in the internal algebra. Basically,

we take care of regular path epressions and rewrite

them into structural recursive funtions. Functions

defined by letrec sfun are already in the form

of structural recursion, hence we keep them un-

changed. In particular, the specification of the

query is the following.

main f1 where

f1({c:$g}) = {c:b2d($g)} U f1($g)

f1({$l:$g}) = f1($g)

b2d({b:$g}) = {d:b2d($g)}
b2d({$l:$g}) = {$l:b2d($g)}

From the above specification, we extract two

functions e→ and eπ in order to generate a Pregel

program. This step is done by Compiler.

e→ =λ(&z, $l).

(&z, $l) match {
case (&f1, c) ⇒ {&b2d}
case (&f1, ) ⇒ {&f1}
case (&b2d, b) ⇒ {&b2d}
case (&b2d, ) ⇒ {&b2d}

}
eπ =λ(&z, $l).

(&z, $l) match {
case (&f1, c) ⇒ &f1 := {c : &b2d}U&f1

case (&f1, ) ⇒ &f1 := &f1

case (&b2d, b) ⇒ &b2d := {d : &b2d}
case (&b2d, ) ⇒ &b2d := {$l : &b2d}

}
Figure 4 shows intermediate graphs generating

during the evaluation. Firstly, a marker graph is

created by the Pregel phase mark . The marker

graph is computed as follows. First, the root ver-

tex is initialized with a singleton set {&f1}, where
&f1 is the marker in our program. We evaluate

the first edge (u, a, v) from the root. Its result,

e→(&f1, a) = {&f1}, is written to the vertex v.

Next, we concurently evaluate two edges (v, b, w1)

and (v, c, w2) emanating from v, and results are

written to respective targets w1, w2. This proce-

dure is iterated and then terminated when it can

not find new markers to add to vertices. A bulk

graph is then computed by the bulk as follows. For

each vertex u, and its set of markers Xu, we create

|Xu| disjoint vertices. Next, we apply the function

eπ on each edge (u, l, v) and each marker in Xu, pro-

ducing a subgraph of |Xu| input markers. In Fig. 4,

these subgraphs are surrounded by a shaded rectan-

gle. After that, we use ε-edges to connect disjoint

vertices and subgraphs. Finally, the phase eelim

eliminates all ε-edges in the bulk graph to produce

the final result. 2
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vertex ids. The root node is marked by &

3. 4. 2 Specifications with if then else

We now turn to show how to evaluate specifica-

tions containing if then else statements. The dif-

ficulty in evaluating such specifications is relating

to the computation for each edge. Recall that each

declaration f({l : $g}) describes a computation for

an edge labeled l. Once there exists a if then else,

the function f certainly depends on the graph $g,

which is difficult to be implemented in Pregel where

each vertex only knows its outgoing edges instead

of the whole following graph $g. Our idea is evalu-

ating all branches if , then, else at the same time

by a specfication without if then else, then using

an iterative Pregel algorithm to check conditions in

branches if , and finally using another specfication

without if then else to extract final results from

branches then and else.

We sketch our idea via a simple example. Con-

sider the graph in Fig. 1, we write a specification

to return all titles of papers published in 2010. For

brevity, we ignore edges Int connecting edges Year

and its value (say, edge 2007), hence, for example,

the path Year.Int.2007 now becomes Year.2007.

main f1 where

f1 ({Paper : $g}) = if !isemtpy(f2 ($g))

then f3 ($g)

else {}
f1 ({$l : $g}) = {}

f2 ({Year : $g}) = f21 ($g)

f2 ({$l : $g}) = {}

f21 ({2010 : $g}) = {2010 : {}}
f21 ({$l : $g}) = {}

f3 ({Title : $g}) = id($g)

f3 ({$l : $g}) = {}
Here, {} is a graph constructor for an empty graph.

If the function f2 returns an empty graph, then

the expression isemtpy(f2 ($g)) returns True, oth-

erwise, False.

The first specification without if then else is

achieved by flattening if then else statements and

representing them by graphs whose edges are cor-

respondent to keywords, e.g. if , then, else,

isempty etc. Here, we use a special prefix “ ”

to distinguish keywords from users’ data in a



graph. One could view these graphs as Abstract

Syntax Trees (ASTs) of if then else statements.

main f1 where

f1 ({Paper : $g}) = { match : ({ if :

{ cond not :

{ isempty : f2 ($g)}}})
U ({ then : f3 ($g)})
U ({ else : {}})

f1 ({$l : $g}) = {}
. . .

Note that, for each if then else statement, we

introduce an edge match appending to the root

of the if then else graph. The label of these

edges will be changed to one of match true and

match false during the iterative Pregel algorithm.

The match true ( match false) indicates that the

expression of if returns a value True (False). These

match edges are also important to derive another

specification without if then else in order to ex-

tract the final result.

The iterative Pregel algorithm evaluates if

branches in order to update edges match. Basi-

cally, it starts from edges cond isempty to check

the following graphs of those edges are empty or

not, then propagates results back to the match

edges. Afterwards, match will be updated to

match true or match false. Figure 5(b) shows

an example result when applying this algorithm to

the graph in Fig. 5(a).

Finally, we use another specification without

if then else to extract the final result from the

graph in Figure 5(b). This specification finds

all edges match true and match false, then ex-

tracts graphs following edges then (or else)

once it meets edges match true (or match false).

This specification is independent with input

queries/specifications, and is always written as fol-

lows.

main f1 where

f1 ({ match true : $g}) = fthen($g)

f1 ({ match false : $g}) = felse($g)

f1 ({$l : $g}) = {$l : f1 ($g)}

fthen ({ then : $g}) = f1 ($g)

fthen ({$l : $g}) = {}

felse ({ else : $g}) = f1 ($g)

felse ({$l : $g}) = {}

4 Implementation and Evaluation

We implemented our framework over GraphX [25],

an open source library for big graph processing.

GraphX is a library of Spark and supports Pregel

model. We used the Spark version 1.4.0 (released

Jun 11, 2015).

The dataset used in our experiments is Ama-

zon Product Co-purchasing Network†1. It contains
product metadata and review information of about

548, 552 different products from Amazon website.

We need firstly to convert the raw dataset of

Amazon Product to a rooted directed edge-labled

graph. This converted graph contains 90, 227, 076

vertices and 103, 573, 986 edges. We used the fol-

lowing schema (KM3 format) for our data graph.

package Product {
datatype String;

datatype Int;

class Product {
reference id: Int;

reference asin: Int;

reference title: String;

reference group: Group;

reference salesrank: Int;

reference similar [0-*]: Product;

reference category [0-*]: Category;

reference review [0-*]: Review;

†1 https://snap.stanford.edu/data/amazon-meta.html
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}
class Category {

reference id: Int;

refrence name: String;

reference contain [0-*]: Category;

}
class Review {

reference time: String;

reference customer: Customer;

reference rating: Int;

reference votes: Int;

reference helpful: Int;

}
class Customer {

reference id: Int;

}
class Group {

reference name: String;

}
}
The schema is also used by users to write UnQL

queries.

Although, in general, our framework is for un-

structured data presented by graphs, we compared

our framework with a relational data processing

framework, Spark SQL [3], to see the performance

of our framework when dealing with structured

data. To create an input for Spark SQL, we stored

the Amazon Product dataset in Tables, where each

table corresponds to one class in the KM3 schema

file (listed above) and we also add more tables to

make relationships between tables.

We used three UnQL Queries in our experiments

in which one is regular path queries and others are

conjuntive regular path queries. The first query

returns the category name and the title of every

product.

Q1 (unql) =

SELECT

{product:
((SELECT {category:$c}
WHERE

{category.Category.name:$c} IN $p)

U

(SELECT {title:$t}
WHERE {title:$t} IN $p))

}
WHERE {Product:$p} IN $db

The second query returns all information of prod-

ucts which belongs to group Book.

Q2 (unql) =

SELECT

(SELECT

{product:($a U $t U $sr U $c



U $r U $g U $s)}
WHERE

{asin:$a} IN $p,

{title:$t} IN $p,

{salesrank:$sr} IN $p,

{category.Category.name:$c} IN $p,

{review.Review.customer:$r} IN $p,

{group:$g} IN $p,

{similar.Product.asin:$s} IN $p

)

WHERE

{Product:$p} IN $db,

{group.Group.name:{$b:{}}} IN $p,

$b = "Book"

The third query returns all information of prod-

ucts that belongs to group Book, in which we don’t

return the field asin of similar products of those

products, but the field asin of similar products of

similar products of those products.

Q3 (unql) =

SELECT

(SELECT

{product:($a U $t U $sr U $c

U $r U $g U $s)}
WHERE

{asin:$a} IN $p,

{title:$t} IN $p,

{salesrank:$sr} IN $p,

{category.Category.name:$c} IN $p,

{review.Review.customer:$r} IN $p,

{group:$g} IN $p,

{similar.Product.similar.Product.asin:$s}
IN $p

)

WHERE

{Product:$p} IN $db,

{group.Group.name:{$b:{}}} IN $p,

$b = "Book"

Spark SQL queries corresponds to the above

UnQL queries are as follows.

Q1 (sql) =

SELECT product.title, category.name

FROM product

LEFT OUTER JOIN prodcat

ON (product.id = prodcat.productId)

LEFT OUTER JOIN category

ON (category.id = prodcat.categoryId)

Q2 (sql) =

SELECT product.asin, product.title,

product.salesrank, category.name,

customer.id, prodgroup.name,

prod1.asin

FROM product

LEFT OUTER JOIN prodcat

ON (product.id = prodcat.productId)

LEFT OUTER JOIN category

ON (prodcat.categoryId = category.id)

LEFT OUTER JOIN review

ON (review.productId = product.id)

LEFT OUTER JOIN customer

ON (review.customer = customer.id)

LEFT OUTER JOIN prodsimilar

ON (product.id = prodsimilar.productId)

LEFT OUTER JOIN product as prod1

ON (prodsimilar.productAsin = prod1.asin)

LEFT OUTER JOIN prodgroup

ON (product.groupid = prodgroup.id)

WHERE prodgroup.name = "Book"

Q3 (sql) =

SELECT product.asin, product.title,

product.salesrank, category.name,

customer.id, prodgroup.name,

prod2.asin

FROM product

LEFT OUTER JOIN prodcat

ON (product.id = prodcat.productId)

LEFT OUTER JOIN category

ON (prodcat.categoryId = category.id)

LEFT OUTER JOIN review

ON (review.productId = product.id)



LEFT OUTER JOIN customer

ON (review.customer = customer.id)

LEFT OUTER JOIN prodsimilar

ON (product.id = prodsimilar.productId)

LEFT OUTER JOIN product as prod1

ON (prodsimilar.productAsin = prod1.asin)

LEFT OUTER JOIN prodsimilar as prodsim1

ON (prod1.id = prodsim1.productId)

LEFT OUTER JOIN product as prod2

ON (prodsim1.productAsin = prod2.asin)

LEFT OUTER JOIN prodgroup

ON (product.groupid = prodgroup.id)

WHERE prodgroup.name = "Book"

Table 1 shows execution time in our experiments.

We vary the number of workers (processors) to eval-

uate the performance of our framework. It is clear

that our framework has a very good performance

when we double the number of processors from 16

to 32. It gains a linear speedup. However, when

we increase the number of processors up to 64,

we could not gain linear speedup, but the execu-

tion time still decreases. This phenomenon has

also been observed in other Pregel-based frame-

works [8, 14]. Queries Q2 and Q3 were almost 3

times slower than Q1. This is because Q2 and

Q3 are conjunctive regular path queries, and they

are rewritten using three computations: 2 specifica-

tions without if then else and one iterative Pregel

algorithm.

Our framework is slower than Spark SQL for sim-

ple queries, but faster than Spark SQL for com-

plex queries that contains many joins. Looking

at the table 1, we see that, for Q1, Spark SQL is

much faster than our framework. This is because

our framework needs to consider the whole graph,

while Spark SQL just refers to two tables to obtain

results. However, when we increased the number

of joins, say Q2 query, two frameworks are quite

close in performance. Finally, for Q3, our frame-

work outperforms Spark SQL though we just add

two more joins in the query.

5 Related Work

Graph Processing: Systematically developing

graph algorithms is non-trivial due to the existence

of cycles. Some works have tried to reduce prob-

lems on graphs to the ones on trees whose system-

atic solutions have been known. Wang et al. [22]

proposed a systematic approach for graph prob-

lems via tree decomposition. Wei [23] used tree

decomposition as an indexing method for answer-

ing reachability queries. Another approach is to de-

velop a new calculus for graphs. UnCAL algebras

is based on structural recursion [5]. GraphQL [10]

is a graph query language whose core is a graph

algebra. Compositions of graph structures are al-

lowed by extending the notion of formal languages

from strings to the graph domain. Graph gram-

mars have been used for graph transformations in

various domains [17]. However, both UnCAL and

GraphQL are different in that their focus has been

on graph databases. Our DSL is a subset of UnCAL

language.

High-Level Framework: One of the few works

on processing queries using Pregel is proposed by

Nole et al. [16], in which Brzozowski’s derivation of

regular expressions are exploited. In consequence,

queries are limited to regular path queries. Krause

et al. [12] proposes a high-level graph transforma-

tion framework on top of BSP model. In particu-

lar, they implemented the framework in Giraph,

an open-source implementation of Pregel model.

The framework is based on graph grammars. An-

other approach is done by Salihoglu et al. [18], in

which they have found a set of high-level primi-

tives that capture commonly appearing operators

in large-graph computations. These primitives are

also implemented in GraphX library.



表 1 Experimental Result on Amazon Product Dataset

Workers†2 Q1 (unql) Q2 (unql) Q3 (unql) Q1 (sql) Q2 (sql) Q3 (sql)

16 144 377 421 14 115 295

32 62 189 217 10 111 283

64 50 173 199 15 112 278

6 Conclusion

We proposed a framework on top of Pregel to

query and transform big graphs. It supports

both regular path queries and conjunctive regular

path queries, as well as transformations based on

them. Experimental results show that our frame-

work gains a good performance. We also com-

pared our framework with a relational data process-

ing (Spark SQL) to evaluate its performance when

dealing with structured data. We observed that

our framework is faster than Spark SQL for com-

plex queries that include many joins. This shows

the advantage of graph databases over relational

databases.

In the future, we will extend our framework to

support groupby queries and join queries. For such

queries, its specifications in the internal algebra

need to be able to join graphs based on two edge

variables that are parameters of two different struc-

tural recursive functions. It is not clear how to

transform such specifications to existing specifica-

tions supported so far.
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