
日本ソフト ウェア科学会第 30 回大会 (2013 年度) 講演論文集

BiFluX: A Bidirectional Functional Update

Language for XML

Tao Zan, Hugo Pacheco and Zhenjiang Hu

XML formats are widely used for information exchange and data processing. A common use is to store

information in the same way as relational databases, and many XML query languages such as XQuery have

been developed for this purpose. De facto XML processing languages are traditionally unidirectional, in the

sense that programmers write transformations from source formats to view formats, but backward updating,

i.e., translating view modifications into the original XML database, is not considered. To cover this gap,

existing XML bidirectional languages propose particular linguistic mechanisms that aid programmers in

writing a forward XML transformation, such that a consistent backward transformation can be derived for

free. Unfortunately, as the classical view-update problem for relational databases, backward transformations

are generally not unique and existing bidirectional systems simply provide one out of many possible, which

may not match the programmer’s expectations of a view update.

This paper introduces BiFluX, a novel bidirectional XML update language inspired on Flux, a func-

tional XML update language. BiFluX follows a pragmatically different approach from existing bidirectional

languages: instead of writing (simpler) XML queries, programmers write backward transformations by spec-

ifying how a view format can be used to update a source database, for which there is a unique query. The

novel approach allows programmers to transparently control how view updates can be reflected back to an

XML database, while offering bidirectionality.

1 Introduction

Bidirectional transformations [7] [11], transforma-

tions that execute both forwards and backwards,

aim at enforcing some notion of consistency be-

tween two data domains. Since data evolves natu-

rally over time and is often replicated among differ-

ent applications, this pattern reoccurs with various

shapes in many computer science disciplines, such

as databases, model transformations, data synchro-

nization or user interfaces.

BiFluX: A Bidirectional Functional Update Language

for XML

Tao Zan, Department of Informatics, The Graduate

University for Advanced Studies.

Hugo Pacheco, Information Systems Architecture Re-

search Division, National Institute of Informatics.

Zhenjiang Hu, Information Systems Architecture Re-

search Division, National Institute of Informatics.

Originated from the well-known view updating

problem in the database community [1], one of the

most popular bidirectional transformation idioms

are lenses [9]. A lens focuses on a special asym-

metric case: a forward transformation get defines

a view of a source database that usually contains

more information, and a backward transformation

put defines a view update strategy that synchro-

nizes an original source database with a modified

view. Naturally, these transformations shall not be

arbitrary and are expected to satisfy two instru-

mental well-behavedness properties:

put s (get s) = s PutGet

get (put s v) = v GetPut

The PutGet property means that a lens is ac-

ceptable and all views can be reflected to the

source: applying the forward transformation after

putting back any view shall return the same view.

The GetPut property means that a lens is stable:

putting back a view immediately after getting it

shall yield the original source.

During the last decade, several bidirectional

programming languages [9] [10] [3] [4] [14] [15] [12] have

been developed to aid programmers in writing bidi-

rectional programs that resemble writing a forward

get transformation, and provide automatic mech-

anisms to derive a suitable backward put trans-

formation for free. Such languages permit writing

bidirectional programs that are easier to maintain,

but fail to adequately address the inherent ambi-

guity problem of bidirectional transformations [5].

As most interesting cases of get transformations

are not injective, there may exist many possible

put transformations that combined with get form

a well-behaved lens. Despite of this fact, existing

bidirectional languages are only designed to sat-

isfy fundamental well-behavedness principles and

only consider one particular synchronization strat-

egy that may not match the programmer’s expecta-

tions for particular updates. This non-uniqueness

often leads to unpredictable bidirectional behavior

as these languages give little insight to users about

which particular backward synchronization strat-

egy is chosen among the myriad possible.

An insightful observation is that while one get

transformation may be combined with several put

transformations, only one get transformation is

possible per put under the corresponding consis-

tency properties. This primacy of put has been

shown in [8] and encourages an excitingly powerful

approach to specifying bidirectional lens programs

by their backward transformations, with the dis-

tinctive advantage of being capable of completely

expressing all aspects of a bidirectional transforma-

tion, while retaining the maintainability of writing

a single program.

A logical conclusion is then to focus the design

of a bidirectional language entirely on the program-

ming of put. Nevertheless, this is not a trivial task

since not all said put transformations satisfy the

bidirectional laws. Moreover, put : S → V → S

is evidently harder to write than get : S → V ,

as programmers cannot think solely in source-to-

view terms but must consider more complex up-

date strategies that synchronize view updates with

existing sources. Therefore, the programmer shall

be guided and restrained accordingly by a practical

put programming approach.

In previous work [16] we have explored the design

of a put-based language whose building blocks are

injective put s transformations (of type V → S),

for any source s. This motivates a specification

style dual to that of get-based languages, by com-

posing put-based combinators from view to source,

but that allows users to control in a predictable way

the behavior of the backward transformations that

they write.

Notwithstanding, writing a program in a (get-

based or put-based) bidirectional language typi-

cally implies describing the concrete steps that con-

vert source databases into smaller views. This

makes it impractical to express queries over even-

tually large databases, since one must explicitly de-

scribe how it ignores unrelated parts of the source.

In this paper, we investigate another approach:

to flip the definition of put and develop a language

of put v functions (of type S → S), for some view v.

This parameterization on views motivates a bidirec-

tional update language (in contrast to bidirectional

transformation languages) in which programmers

write bidirectional updates that modify an original

database to embed some view information. Type-

preserving updates are simpler to write than type-

changing transformations in that one only needs to

specify how the view information changes a small

part of the source, leaving the remaining data fixed.

We demonstrate the feasibility of the novel ap-

proach by proposing the BiFluX language for the

bidirectional updating of XML databases. BiFluX

is a bidirectional variant of Flux [6], a functional

XML update language. We lift unidirectional Flux

updates to bidirectional BiFluX updates that carry

an additional notion of view. Reading BiFluX pro-

grams as put transformations will motivate several

language extensions and demand a careful choice of

semantics and extra static conditions on updates to

ensure that view information is indeed put back to

the source, thus building well-behaved lenses.

The rest of the paper is organized as follows.

Section 2 gives a taste of our BiFluX bidirectional

update language with a simple lens transformation

written in two different styles. We give an overview

of the features of the BiFluX language in Section 3

and demonstrate them with various practical exam-

ples in Section 4. Section 5 concludes and discusses

directions for future work.

2 Motivation Example

This section begins by illustrating a typical ex-

ample of a bidirectional transformation written in a

standard bidirectional programming language. We

then exemplify how the same transformation can

be expressed in BiFluX, giving a flavor of the novel

bidirectional updating style.

2. 1 Bidirectional programming

Let us start by defining an address book regular

expression type according to the following DTD.
<!DOCTYPE addrbook [

<!ELEMENT addrbook (person*)>

<!ELEMENT person (name,email+,tel)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT tel (#PCDATA)>

]>

An address book contains a list of persons, each one

possessing a name, a non-empty list of emails and a

telephone number. The following XML document

encodes a database of three persons conforming to

this type definition:

<addrbook>

<person>

<name>Tao Zan</name>

<email>zantao@nii.ac.jp</email>

<email>zantao007@gmail.com</email>

<tel>+81-3-5841-7430</tel>

</person>

<person>

<name>Hugo Pacheco</name>

<email>hpacheco@nii.ac.jp</email>

<email>hpacheco@di.uminho.pt</email>

<tel>+81-3-5841-7411</tel>

</person>

<person>

<name>Zhenjiang Hu</name>

<email>hu@mist.i.u-tokyo.ac.jp</email>

<email>hu@ipl.t.u-tokyo.ac.jp</email>

<tel>+81-3-5841-7411</tel>

</person>

</addrbook>

Now imagine that we want to summarize our

source address book into a simpler view address

book where people only have one email, and no tele-

phone numbers, according to the following DTD.

The purpose for this may be for instance to exhibit

a minimal address book in an email application that

has no concern for telephone addresses.
<!DOCTYPE addrbook [

<!ELEMENT addrbook (person*)>

<!ELEMENT person (name,email)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT email (#PCDATA)>

]>

For this purpose, we would like to write a bidirec-

tional transformation between the two source and

view schemas, providing us a forward transforma-

tion that gets a simplified address book from a more

complete address book and a backward transfor-

mation that synchronizes a simplified address book

with an original address book that contains more

information about each person. One possible way

is to write this bidirectional transformation in the

Boomerang string lens language [3]:

let ALPHA = [A-Za-z]+

let DOMAIN = [A-Za-z|.|-]+

let EMAIL = ALPHA . "@" . DOMAIN

let TEL = "+81" . "-" . [0-9] ."-"

. [0-9]{4} ."-" . [0-9]{4}

let emails = (del ", " . del EMAIL)*

let comp = key ALPHA . copy ","

. copy EMAIL . emails . copy ", "

. ins TEL "+81-0-0000-0000"

let comps = copy "" | <comp> . ("\n" . <comp>)*

Since string lenses were not specifically designed

for XML processing, to avoid distracting the read-

ers from the essential we assume that the XML for-

mats are flattened into a simpler format of strings

where fields are separated by commas and people

by newlines; an XML-compliant string lens would

simply involve more parsing and pretty-printing

boilerplate code. For example, an arbitrary source

database would look like:
name1, email11, email12, tel1

name2, email2, tel2

The first four lines of our string lens define the

regular expressions for alphabetical data, emails

and telephone numbers. The lens comp processes

each person (per each line): it copies the name to

the view, then copies the first email while delet-

ing remaining emails (emails) and at last deletes

the telephone number; the separating commas are

dealt with accordingly. A sequence of lines is han-

dled by comps.

The get transformation of this lens for our source

database then produces the following view address

book.

<addrbook>

<person>

<name>Tao Zan</name>

<email>zantao@nii.ac.jp</email>

</person>

<person>

<name>Hugo Pacheco</name>

<email>hpacheco@nii.ac.jp</email>

</person>

<person>

<name>Zhenjiang Hu</name>

<email>hu@mist.i.u-tokyo.ac.jp</email>

</person>

</addrbook>

When writing lenses, programmers are invited to

think in terms of the forward transformation, but in

our running lens there are some more subtle details

mixed together into a single lens design, namely

key, angle brackets <comp> and ins. These addi-

tional combinators are used to provide extra infor-

mation on how to derive a corresponding backward

transformation strategy. Consider for example the

modified view address book where we reorder Zhen-

jiang (while updating his email) and Tao and insert

a new person John Doe:

<addrbook>

<person>

<name>Zhenjiang Hu</name>

<email>hu@nii.ac.jp</email>

</person>

<person>

<name>Tao Zan</name>

<email>zantao@nii.ac.jp</email>

</person>

<person>

<name>John Doe</name>

<email>foo@bar.com</email>

</person>

</addrbook>

The put transformation of our string lens, when

invoked with this updated view and the original

source, will produce the following updated address

book:

<addrbook>

<person>

<name>Zhenjiang Hu</name>

<email>hu@nii.ac.jp</email>

<email>hu@ipl.t.u-tokyo.ac.jp</email>

<tel>+81-3-5841-7411</tel>

</person>

<person>

<name>Tao Zan</name>

<email>zantao@nii.ac.jp</email>

<email>zantao007@gmail.com</email>

<tel>+81-3-5841-7430</tel>

</person>

<person>

<name>John Doe</name>

<email>foo@bar.com</email>

<tel>+81-0-0000-0000</tel>

</person>

</addrbook>

This put transformation has matched each person

in the source with each person in the view by their

names, and retrieved their additional source infor-

mation for Zhenjiang and Tao that had contacts in

the original source, but creating a default telephone

number for John Doe. In the lens program, the an-

gled brackets <comp> identify lines (persons) as en-

tries that can be reordered in the source and view,

and key declares the unique key on which they must

match to identity the same person; ins specifies the

default telephone for newly created contacts.

2. 2 Bidirectional updating

The same bidirectional transformation can be

written as a bidirectional update procedure in Bi-

FluX. Instead of writing a get-based lens program,

the programmer specifies a put update strategy di-

rectly as an update on the original address book

format. Figure 1 shows the BiFluX code for our

address book example.

To give an intuition, our update starts by defin-

ing the root procedure addrbook that accepts

as arguments the original source and updated

view. Then it focuses on a list of persons in

the source address book according to the path

$saddrbook/addrbook/person and a list of persons

in the view address book according to the path

$addrbook/addrbook/person. Persons in the two

lists are matched using an explicit matching condi-

tion, in this example the name of persons in both

lists. Finally, if a person in the view matches a per-

son in the source, its updated view email ($email)

must replace the first email (email[1]) in the source

database; if a new unmatched person appears in the

updated view, then a new contact with a default

telephone is inserted in the source.

The main difference in comparison to the pre-

vious string lens is that the emphasis is now on

writing a put transformation instead of a get trans-

formation. This will allow a much more flexi-

ble and intuitive control over backward synchro-

nization strategies, by making several put design

choices explicit in the design of a bidirectional up-

date; the unique forward query can be essentially

derived from the source path expressions that con-

nect selected source data with the view. Through-

out this paper we will present more examples that

attempt to practically corroborate this assumption.

Moreover, since programmers write such put trans-

formations in an higher-level update language, they

only specify which parts of the source are to be

updated with the updated view information. For

instance, in the string lens version we had to ex-

plicitly delete trailing emails and the telephone of

each person, whereas the bidirectional update ver-

sion just concentrates on the updated information

and leaves the remaining parts unchanged by defi-

nition.

3 A Bidirectional Update Language

In this section, we introduce our BiFluX language

by describing its high-level, natural language syn-

tax similar to other update languages like SQL,

XQuery and (naturally) Flux. The complete syn-

tax for BiFluX updates is shown in Figure 2.

3. 1 Flux-like syntax

At the outset, bidirectional BiFluX source up-

dates look just like regular Flux source updates.

Variables Var are written $x, $y, etc. The syntac-

tic classes Expr and Path denote ordinary XQuery

expressions and XPath paths, respectively. State-

ments Stmt include let-binding, conditionals, se-

quential composition, update operations Upd and

procedures. A procedure has a name and a tuple of

argument paths, but it usually takes only two ar-

guments corresponding to the path to the current

source focus and a path to the current view focus.

(An update program is assumed to start with a

predefined root procedure that is invoked with the

original source and updated view XML documents,

declared in two special reserved variables $source

and $view that are always in the environment.)

An update operation Upd receives a path from

the current source focus and, like in Flux, may

PROCEDURE addrbook($saddrbook, $addrbook) =

UPDATE $sperson IN $saddrbook/addrbook/person BY

{

MATCH -> REPLACE email[1] WITH $email

| UNMATCHV -> CREATE VALUE <person> <name/> <email/> <email>foo@default.com</email> <tel/> </person>

}

FOR VIEW person[$name AS name, $email AS email] IN $addrbook/addrbook/person

MATCHING SOURCE BY $sperson/name VIEW BY $name

図 1 BiFluX update for the address book example.

Stmt ::= Upd [WHEREExpr]

| IFExpr THEN Stmt ELSE Stmt

| Stmt ; Stmt

| LETPat := Expr IN Stmt

| CASEExpr OF {Cases }

| { Stmt }

| PROCEDUREName ′(′ Path, . . . , Path ′)′

Upd ::= INSERT (BEFORE | AFTER)PathPat VALUEExpr

| INSERTAS (FIRST | LAST) INTOPathPat VALUEExpr

| DELETE [FROM]PathPat

| KEEPPath AS (FIRST | LAST)

| CREATEVALUEExpr

| REPLACE [IN]PathPat WITHExpr

| UPDATEPathPat BY Stmt

| UPDATEPathPat BYVStmt FORVIEWPathPat [Match]

Cases ::= Pat → Stmt

| Cases ′|′ Cases

VStmt ::= VUpd ′|′ VUpd

| {VUpd }

VUpd ::= MATCH → Stmt

| UNMATCHS → Stmt

| UNMATCHV → Stmt

Match ::= MATCHINGBYPath

| MATCHINGSOURCEBYPath

| VIEWBYPath

PathPat ::= [Pat IN]Path

| Var [ASType]

Pat ::= ′(′ Pat, . . . ,Pat ′)′

| Var [ASType] | Type

| Name[Pat, . . . ,Pat]

Type ::= Name | @Name | Name[Type]

| String | () | Type∗ | Type?

| Type+ | (Type)

| Type ′|′ Type

| Type,Type

図 2 Concrete syntax of BiFluX.

be either singular or plural. Singular updates are

executed once for each node in the result set of

the path; plural updates operate on the children

of each selected value. Briefly, singular insertions

(INSERT BEFORE/AFTER) insert a value before

or after each selected node, while plural insertions

(INSERT AS FIRST/LAST INTO) insert a value

at the beginning or end of the child-list of the se-

lected nodes. Singular deletions (DELETE) delete

selected nodes, whereas plural deletes (DELETE

FROM) delete only the child-lists of selected nodes.

Singular replacements (REPLACE WITH) replace

all selected nodes with the same expression, while

plural replacements (REPLACE IN) replace the

t : T t' : T' t'' : T''

図 3 Update composition in Flux.

corresponding child-lists. The singular UPDATE

Stmt BY operation applies a statement to each

node in the result of Path.

3. 2 Bidirectional updates

In spite of the fact that BiFluX updates strongly

resemble Flux updates, their bidirectionality en-

tails a subtly different semantics. A simple (uni-

directional) Flux statement Stmt is read as type-

s : S s' : S s'' : S

v
1
 : V

1
v

2
 : V

2

図 4 Update composition in BiFluX.

changing transformation: given an input tree t

of type T , execute Stmt to update t, producing

a target tree t′ of some other type T ′. In Bi-

FluX, a (bidirectional) statement Stmt denotes a

put : V → S → S transformation, i.e., given an

updated view of type V , it updates the contents

of a source of type S with the updated view in-

formation, preserving the source type S. For this

reason, we assume that BiFluX programs are de-

fined for fixed source and view schemas, while Flux

programs are defined for a fixed source schema and

produce a corresponding target schema.

This justifies a different notion of composition.

Imagine that we compose two Flux statements

Stmt;Stmt′ (Figure 3). This can be read as: given

an initial tree t of type S, apply statement Stmt to

update s into an intermediate tree u of type U , fol-

lowed by applying Stmt’ to compute the resulting

updated tree t with final type T . Since a BiFluX

update can not change the source type, two com-

posed statements Stmt;Stmt′ update source trees

of same type, but embedding different view infor-

mation (Figure 4): Stmt updates an original source

s of type S with a view v1 of type V1, producing an

intermediate source s′, and Stmt′ updates s′ with

different view information v2 of type V2, producing

a resulting updated source s′′.

3. 3 Conditionals and where conditions

In Flux, conditionals IF Expr THEN Stmt have

a single then-statement, and its semantics simply

applies Stmt if the condition Expr evaluates to true

or returns the original source otherwise. McCarthy

conditionals IF Expr THEN Stmt ELSE Stmt′ can

be defined using composition IF Expr THEN Stmt;

IF not(Expr) THEN Stmt′ – if the condition is ver-

ified, then the first statement updates the source

via Stmt and the second statement does nothing,

and vice-versa.

However, the same reasoning can not be applied

in BiFluX because, to ensure that view informa-

tion is embedded into the source, an update that

does not satisfy the condition must fail (except for

empty views). This is the reason why we introduce

a primitive if-then-else conditional.

BiFluX considers two classes of where conditions

for source-based filtering or view-based filtering. A

source-based condition does not refer to view vari-

ables and performs like a where conditions in Flux,

by filtering only the nodes that satisfy a specify cri-

teria from the source path. On the other hand, a

view-based condition does not refer to source vari-

ables and imposes a constraint on the nodes from

a view path: since we cannot filter out any view

information (it must be embedded in the source),

the update will fail if the condition is not satisfied.

3. 4 Pattern matching

In contrast to Flux, that does not support defin-

ing updates by matching tree patterns agains the

source data, pattern matching is a key design deci-

sion of BiFluX. The typical way to write an update

in Flux (and BiFluX) is to define a path on the orig-

inal source that selects the particular source infor-

mation to be modified. But to ensure that a bidi-

rectional update is well-behaved, we can not apply

the same kind of lossy queries to the view. There-

fore, apart from very restrictive injective paths,

views in BiFluX must always be decomposed via

pattern matching, hence the added optional pat-

terns for source and view paths of update opera-

tions.

This choice enables our language to statically

guarantee that view information is embedded into

the source, by simply guaranteeing that all view

variables in a pattern are put back to the updated

source. (Our pattern matching algorithm follows

familiar lines of XML transformation languages and

is implemented via structural subtyping [13].) To

keep pattern matching as simple as possible, we

avoid the use of non-linear variables [12] by sup-

porting only patterns that are sequences of vari-

ables. Alternative patterns can still be defined by

using CASE statements, that behave in the same

way as multiple patterns in functional languages

such as Haskell.

3. 5 Source-view alignment

Thus far, all the update operations in our lan-

guage perform in-place updates; they iterate over a

source sequence (defined as path on the source), up-

dating each and every node in the sequence accord-

ingly. To make it a practical bidirectional updating

language, we extend BiFluX with a new update op-

eration UPDATE PathS BY V Stmt FOR VIEW

PathV that supports iterating over a view se-

quence. Informally, this combinator applies V Stmt

(what we call a view statement) to each node in the

result of a view path PathV , generating an updated

source sequence that replaces the original source se-

quence computed by the source path PathS. This

kind of behavior can not be done in-place. There-

fore, we evaluate the source path as a lens from the

current source focus to the result of the path, and

use lens composition to synchronize the updated

sequence with the source focus. (In our implemen-

tation, we interpret the source paths of update op-

erations as lenses.)

Furthermore, the view sequence may not have the

same number of elements as the original source se-

quence or original source elements may appear have

been reordered in the view. This forces an update

strategy to match the elements of the source and

view sequences in order to identify the source ele-

ments to which view updates must be translated.

This alignment problem is well-known in bidirec-

tional transformations [3] [2] [15].

We allow users to flexibly specify arbitrary align-

ment strategies by defining a MATCHING condi-

tion that defines a (not necessarily unique) key that

intuitively specifies the criteria for source and view

elements to match; if a matching condition is not

specified, a default positional matching is assumed.

Then a view statement V Stmt supports three spe-

cial cases: MATCH for two matching source and

view values; UNMATCHV for unmatched view val-

ues for which there is no source value; and UN-

MATCHS for unmatched source values for which

there is no view. Each of these cases carries an

corresponding statement. For UNMATCHV, since

there is no original source, such statement must

begin with a special CREATE VALUE Expr up-

date that generates a default source value. For

UNMATCHS, the statement must either be of the

form DELETE . (that forgets an original source)

or begin with a special KEEP . AS FIRST/LAST

update (that inserts an “old” source element as the

first or last element in the updated source). As

an additional restriction to use KEEP, program-

mers must ensure manually that the kept source

value does not satisfy the where conditions on the

source. This naturally implies that KEEP can only

be used when a guarding condition is applied to

the source. The reason for this restriction is that,

when additional elements are added to an updated

source sequence, the system must clearly know the

underlying motives for programmers to want to re-

cover such elements. Note that an automatically

derived forward transformation must ignore them

as long as they do not belong to the view.

By default, if the conditions are unspecified we

assume that unmatched sources are ignored from

the updated source and unmatched views generate

default source values generated from the structure

of the source type.

4 Bidirectional Updating Examples

In this section, we demonstrate how diverse bidi-

rectional transformation scenarios can be specified

as bidirectional updates, in particular using Bi-

FluX. These examples illustrate the spirit of bidi-

rectional updating, and highlight the power and

programmability of our bidirectional update lan-

guage in specifying various update strategies.

4. 1 XML transformation

We can also write typical bidirectional XML

transformations as bidirectional updates. A fa-

mous bidirectional XML transformation language

is biXid [12]. Bidirectional programs in biXid

specify forward and backward conversions between

pairs of XML formats. As an example, consider a

bidirectional transformation between the Netscape

and XBEL browser bookmark formats, written in

biXid as the following biXid transformation.

relation top =

html[head[String],

body[h1[var t as String], dl[var nc]]]

<->

xbel[title[var t as String], var xc]

where

contents(nc, xc)

relation contents =

(var nb | var nf)*

<->

(var xb | var xf)*

where

bookmark(nb, xb),

folder(nf, xf)

relation bookmark =

dt[a[@href[var url as String],

var title as String]]

<->

bookmark[@href[var url as String],

title[var title as String]]

relation folder =

dd[h3[var title as String], dl[var nc]]

<->

folder[title[var title as String], var xc]

where

contents(nc, xc)

Both bookmark formats are loosely equivalent and

contain a general title (h1 or title) and a sequence

of bookmarks (dt or bookmark) or folders (dd or

folder), where folders may recursively contain se-

quences of bookmarks or folders.

The biXid language relies on pattern matching

to decompose the source and target formats, and

defines their conversions in a programming by re-

lation paradigm, that makes critical use of am-

biguity and non-linear variable bindings. Unlike

lenses, biXid transformations do not have a pri-

mordial transformation direction and make full use

of ambiguity: a document in one side may have

multiple representations in the other side, or data

in any side may not be related in any way to the

opposite side; biXid solves ambiguity by arbitrar-

ily choosing one of many possible representations

or generating arbitrary data when necessary. For

example, in the top relation head elements in the

Netscape format are not related with XBEL, and

so a backward transformation will “loose” the orig-

inal source head for an arbitrarily generated one.

In BiFluX, we can deal with such ambiguity (for

the asymmetric case of lenses) by allowing users to

choose from many possible representations, recover

data from the original source, or create their own

default data.

The above biXid transformation can be encoded

in BiFluX as shown in Figure 5. Apart from in-

tricacies bound to the disparate styles of both lan-

guages, the BiFluX update resembles very much

the biXid transformation. The top procedure de-

composes the source into head and body (with a

title $h1 and a sequence $nc of dts or dds) and the

view into a title $t and a sequence $xc of bookmarks

or folders. Since the head in the source is not re-

PROCEDURE top($html,$xbel) =

UPDATE html[head[String], body[$h1 AS h1, dl[$nc AS (dt|dd)*]]] IN $html BY

{ REPLACE IN $h1 WITH $t ; contents($nc,$xc) }

FOR VIEW xbel[title[$t AS String], $xc AS (bookmark|folder)*] IN $xbel

PROCEDURE contents($nc,$xc) =

UPDATE $nc BY

{

CASE $v OF

{ bookmark[@href[$url AS String], title[$title AS String]]

-> REPLACE . WITH <dt> {$title} </dt>

| folder[title[$title AS String], $fxc AS (bookmark|folder)*]

-> REPLACE IN h3 WITH $title ; contents(./dl/*,$fxc)

}

}

FOR VIEW $v IN $xc

図 5 BiFluX update for the bookmark example.

lated to the view, we don’t updated it (but the orig-

inal head is preserved unlike in biXid). (Note that

in BiFlux the same behavior would not be possible

for the view, as view patterns must fully decom-

pose the view into a set of variables that shall be

embedded into the source.) Then top replaces the

source $h1 with $t and invokes contents to update

the remaining sequences.

The contents relation in the biXid transforma-

tion makes use of non-linear variables, i.e., variables

that are instantiated multiple times, to match dts

and dds in the source with bookmarks and folders

in the view, respectively. Since only support linear

pattern variables in BiFluX, we handle each view

element using a case expression: when it matches

the structure of a bookmark, we generate a source

dt element with the bookmark’s url and title; oth-

erwise, if it matches the structure of a folder, we

generate a source dd element with the folder’s ti-

tle and a dl with recursively computed contents by

invoking contents with the all the elements under

the dl and the elements from the view folder.

For an execution example, consider a source

bookmark tree represented in the Netscape format

<html>

<head>My Bookmarks</head>

<body><h1>my bookmarks</h1>

<dl><dt>Foo’s</dt>

<dd><h3>my folder</h3>

<dl><dt>stefanzan

</dt></dl>

</dd>

<dt>Bar’s</dt>

</dl>

</body>

</html>

and a different view bookmark tree represented in

the XBEL format:

<xbel>

<title>NII bookmarks</title>

<folder>

<title>National Institute of Informatics

</title>

<bookmark href="http://www.nii.ac.jp/en">

<title>English</title>

</bookmark>

<bookmark href="http://www.nii.ac.jp">

<title>Japanese</title>

</bookmark>

</folder>

<folder><title>my folder</title>

<bookmark href="stefanzan.com">

<title>stefanzan</title>

</bookmark>

</folder>

<bookmark href="bar.edu">

<title>Bar’s</title>

</bookmark>

</xbel>

Finally, we can run our BiFLuX program to update

the source bookmark tree using the view bookmark

tree:

<html>

<head>My Bookmarks</head>

<body><h1>NII bookmarks</h1>

<dl><dd>

<h3>National Institute of Informatics</h3>

<dl>dt>

English

Japanese

</dt>

</dl>

</dd>

<dd><h3>my folder</h3>

<dl><dt>

stefanzan

</dt></dl>

<dt>Bar’s</dt>

</dd>

</dl>

</body>

</html>

After updating, despite the structure of the view

XBEL tree is fully propagated to the source, the

updated source bookmark tree is not created afresh

from the view, unlike in biXid. For example, the

original header “My Bookmarks” is preserved.

4. 2 Flexible alignment

Many bidirectional programming approaches are

state-based, in the sense that put transformations

only consider original source and updated view

values, as opposed to operation-based where some

knowledge of the exact changes that led to the

update result is also recorded. Since this for-

mulation provides little knowledge about the ac-

tually performed updates, put must align source

and view values in order to guide the propaga-

tion of view updates to corresponding source el-

ements. Some existing alignment-based bidirec-

tional lens languages [3] [2] [15] promote parameter-

izing lens programs with user-specified heuristics

for calculating alignments, and devise particular

bidirectional transformation primitives that reuse

such alignment information to refine put behavior.

Similarly, our UPDATE PathS BY V Stmt FOR

VIEW PathV update operation allows users to ex-

plicitly declare how to align source and view se-

quences using arbitrary paths.

For example, suppose that we have a source

database that contains two levels of nested struc-

ture: a document is constituted by a list of sections,

that have a title, a paragraph and a list of subsec-

tions, where a subsection has itself a title and a

paragraph:

<sections>

<section>

<title>Grand Tours</title>

<paragraph>

The grand tours are major cycling ...

</paragraph>

<subsection>

<title>Giro d’Italia</title>

<paragraph>

The Giro is usually held in May ...

</paragraph>

</subsection>

</section>

<section>

<title>Classics</title>

<paragraph>

The classics are one-day cycling ...

</paragraph>

<subsection>

<title>Milan-San Remo</title>

<paragraph>

The Spring classic is held in ...

</paragraph>

</subsection>

</section>

</sections>

A view definition consists in deleting all para-

graphs and performing some XML-specific struc-

tural changes like changing titles from child nodes

to attributes. Consider the following updated view

document.

<secs>

<sec title=‘Classics’>

</sec>

<sec title=‘Olympic Competitions’>

<subsec title=‘2008 Summer Olympics’/>

<subsec title=‘2012 Summer Olympics’/>

</sec>

PROCEDURE sections($sections, $secs) =

UPDATE $section IN $sections/sections/section BY

{

MATCH -> subsections($section/subsection,$subsecs)

| UNMATCHV -> CREATE VALUE <section> <title/> <paragraph>this section is new</paragraph> </section>

}

FOR VIEW sec[$title AS @title, $subsecs AS subsec*] IN $secs/secs/sec

MATCHING SOURCE BY title/text() VIEW BY $title/string()

PROCEDURE subsections($subsections, $subsecs) =

UPDATE $subsection IN $subsections BY

{

MATCH -> {}

| UNMATCHV -> CREATE VALUE

<subsection>

<title/>

<paragraph>this subsection is new</paragraph>

</subsection>

}

FOR VIEW $subsec IN $subsecs

MATCHING SOURCE BY title/text() VIEW BY @title/string()

図 6 BiFluX update for the sections example (local subsection alignment).

<sec title=‘Grand Tours’>

<subsec title=‘Milan-San Remo’/>

<subsec title=‘Giro d’Italia’/>

</sec>

</secs>

In comparison to the original source: the order of

the sections “Grand Tours” and “Classics” is re-

versed; “Milan-San Remo” is now a subsection of

“Grand Tours”; and a new section “Olympic Com-

petitions” has been added to the view.

Figure 6 shows the BiFluX program for this ex-

ample, that contains two procedures. The root pro-

cedure sections updates the content of sections in

the source with the content of secs in the view,

matched by their titles. If two sections match, we

just update their subsections by calling the auxil-

iary procedure subsections, otherwise we create a

new source section with a default paragraph. Note

that we do not need to update source paragraphs

as they are kept unchanged. The subsections pro-

cedure updates subsections with subsecs in a sim-

ilar way.

Executing this update with the above source and

updated view documents yields the following up-

dated source:

<sections>

<section>

<title>Classics</title>

<paragraph>

The classics are one-day cycling ...

</paragraph>

</section>

<section>

<title>Olympic Competitions</title>

<subsection>

<title>2008 Summer Olympics</title>

<paragraph>this section is new<paragraph>

</subsection>

<subsection>

<title>2012 Summer Olympics</title>

<paragraph>this section is new<paragraph>

</subsection>

</section>

<section>

<title>Grand Tours</title>

<paragraph>

The grand tours are major cycling ...

</paragraph>

<subsection>

LET $subs := $source/sections/section/subsection[title/text() = $subsec/@title/string()] IN

LET $par := if $subs then string-join($subs/paragraph,’ ’) else ’this section is new’ IN

CREATE VALUE <subsection> <title/> <paragraph>{$par}</paragraph> </subsection>

図 7 BiFluX update for the sections example (global subsection alignment).

<title>Milan-San Remo</title>

<paragraph>this section is new</paragraph>

</subsection>

<subsection>

<title>Giro d’Italia</title>

<paragraph>

The Giro is usually held in May ...

</paragraph>

</subsection>

</section>

</sections>

The updated source correctly reorders the sections

in the source according to the view, with updated

subsections and original retrieved from the source

paragraphs for matched sections. However, the be-

havior is slightly different for subsections: the up-

date has recovered the original paragraph for “Giro

d’Italia”, but not for “Milan-San Remo”, that was

originally a subsection of “Classics”. This happens

because view subsections are only locally aligned

with source subsections under the same section.

Therefore, a programmer may want to also re-

trieve the paragraphs of subsections that have been

moved to different sections. He can do so by

changing the statement after UNMATCHV in the

subsections procedure as shown in Figure 7.

The new code now retrieves every subsection in

the original source that has the same title as the

current view subsec, and creates a new paragraph

by concatenating all paragraphs of selected source

subsections with the XPath function string− join;

the XQuery if-then-else condition returns the a de-

fault paragraph if no source subsections are found.

Running our example again, we would see “The

Spring classic is held in ... ” as the paragraph of

“Milan-San Remo” instead of a default.

4. 3 User control over update strategies

A typical query for defining views of databases is

selection, which filters rows satisfying a particular

condition. In BiFluX, we can write various update

strategies for selection queries.

Suppose that we have a source XML document

that contains persons with a name and a city:

<people>

<person>

<name>Hugo</name><city>Tokyo</city>

</person>

<person>

<name>Sebastian</name><city>Kiel</city>

</person>

<person>

<name>Zhenjiang</name><city>Tokyo</city>

</person>

</people>

Assuming an updated view database with only the

names of people who live in ’Tokyo’

<fromtokyo>

<name>Zan</name>

<name>Zhenjiang</name>

</fromtokyo>

we can define a BiFluX program that updates the

original database with a new view as shown in Fig-

ure 8. The people procedure starts by selecting

(using a where condition) only the persons in the

original source that live in ’Tokyo’ and matches

them with names of people in the view. Then, it

copies matched view tokyolites to the source, cre-

ates new view tokyolites with city ’Tokyo’ in the

source (to satisfy the filtering condition) and un-

matched source tokyolites are ignored (by default).

This update will yield an updated source as fol-

lows when applied to our source and view examples:

<people>

PROCEDURE people($people, $fromtokyo) =

UPDATE $sperson IN $people/people/person BY

{

MATCH -> {}

| UNMATCHV -> CREATE VALUE <person> <name/> <city>Tokyo</city> </person>

}

FOR VIEW $vname IN $fromtokyo/fromtokyo/name

MATCHING SOURCE BY name VIEW BY .

WHERE city/text() = ’Tokyo’

図 8 BiFluX update for the people example (delete source tokyolites).

<person>

<name>Zan</name><city>Tokyo</city>

</person>

<person>

<name>Sebastian</name><city>Kiel</city>

</person>

<person>

<name>Zhenjiang</name><city>Tokyo</city>

</person>

</people>

The updated source now contains “Zan” and

“Zhenjiang” living in “Tokyo”, as they come from

the updated view, and “Sebastian” living in “Kiel”,

that existed in the original source and has not been

updated (since he did not live in “Tokyo”). Since

“Hugo” lived at ‘Tokyo’ in the original source and

does not appear in the updated view, he is conse-

quently deleted.

Alternatively, we could have reasonably wanted

to keep “Hugo” in the updated source even if he had

been deleted in the view. For instance, if “Hugo”

moved to a different city and has been deleted from

that city’s municipal records. In fact, he could be

kept in the updated source, as long as he is moved

to a different city, say, “Kyoto”.

This alternative behavior is usually difficult to

specify using traditional bidirectional language, be-

cause they assume fixed update strategies for selec-

tion. In BiFluX, we can easily specify it using a

KEEP . update operation (Figure 9). In the new

version, unmatched source people like “Hugo” will

be inserted in the updated source (note that KEEP

also requires a position relative to the updated view

where such persons are to be inserted), with their

city original city (namely “Tokyo”) replaced with

“Kyoto”:

<people>

<person>

<name>Zan</name><city>Tokyo</city>

</person>

<person>

<name>Sebastian</name><city>Kiel</city>

</person>

<person>

<name>Zhenjiang</name><city>Tokyo</city>

</person>

<person>

<name>Hugo</name><city>Kyoto</city>

</person>

</people>

5 Conclusion

Bidirectional transformations play an important

role in synchronizing and exchanging information

between different data formats, and have gained

significant attention and applicability in the last

decade. Despite the currently wide offer on bidirec-

tional programming languages, research on bidirec-

tional transformations has still not matured for de-

ployment at a larger scale and a unifying framework

for bidirectional transformations is yet to emerge.

The main reason for this is the still very magi-

cal nature of existing solutions, what makes users

justifiably less confident to use bidirectional tech-

nologies. We believe that a feasible answer to

PROCEDURE people2($people, $fromtokyo) =

UPDATE $sperson IN $people/people/person BY

{

MATCH -> {}

| UNMATCHV -> CREATE VALUE <person> <name/> <city>Tokyo</city> </person>

| UNMATCHS -> KEEP . AS LAST ; REPLACE IN city WITH ’Kyoto’

}

FOR VIEW $vname IN $fromtokyo/fromtokyo/name

MATCHING SOURCE BY name VIEW BY .

WHERE city/text() = ’Tokyo’

図 9 BiFluX update for the people example (moved source tokyolites).

these problems lies in put-based bidirectional pro-

gramming approaches, that enable programmers to

potentially specify the complete behavior of bidi-

rectional transformations by directly writing put

transformations, cutting on the magic and unpre-

dictability at the cost of more responsibility.

In this paper, we have proposed an hybrid form

of put-based programming (that we have named

bidirectional updating) that invites programmers

to write bidirectional transformations not directly

as put transformations from source to view but as

more intuitive and readable programs that spec-

ify how to update sources with view information,

while preserving the advantages of put-based pro-

gramming (at a reasonable expressiveness cost). To

the best of our knowledge, the design and motiva-

tion of bidirectional update languages is new, and

unveils a promising style to inspire future bidirec-

tional transformation frameworks.

As a demonstration of the feasibility of our novel

approach, we have designed BiFluX, a bidirec-

tional update language for XML data. In this pa-

per we have given a general informal overview of

our language through differently motivated bidi-

rectional scenarios. BiFluX is ongoing work and

contains much more under the hood. Our proto-

type implementation already supports all the ex-

amples discussed in this paper: it receives source

and view XML documents and DTDs, and ani-

mates an higher-level BiFluX program by defining

its semantics as lower-level put-based lenses. To

be able to read BiFluX programs as bidirectional

transformations, several static conditions (not fully

discussed in this paper) need to be imposed on

paths, patterns, statements and updates; in some

cases (like view-based where conditions), the de-

rived well-behaved put transformations may be par-

tial.

As future work, we plan to clarify the semantics

of our language and provide more static guarantees

to prove the totality of BiFluX updates for par-

ticular domains. We also intend to investigate the

design of bidirectional update languages for other

data domains, such as relational and graph data.

参 考 文 献

[1] François Bancilhon and Nicolas Spyratos. Up-

date semantics of relational views. ACM Transac-

tions on Database Systems (TODS), 6(4):557–575,

December 1981.

[2] Davi M.J. Barbosa, Julien Cretin, Nate Fos-

ter, Michael Greenberg, and Benjamin C. Pierce.

Matching lenses: alignment and view update. In

Proceedings of the 15th ACM SIGPLAN inter-

national conference on Functional programming,

ICFP ’10, pages 193–204, New York, NY, USA,

2010. ACM.

[3] Aaron Bohannon, J. Nathan Foster, Ben-

jamin C. Pierce, Alexandre Pilkiewicz, and Alan

Schmitt. Boomerang: resourceful lenses for string

data. In Proceedings of the 35th annual ACM

SIGPLAN-SIGACT symposium on Principles of

programming languages, POPL ’08, pages 407–419,

New York, NY, USA, 2008. ACM.

[4] Aaron Bohannon, Benjamin C Pierce, and Jef-

frey A Vaughan. Relational lenses: a language

for updatable views. In Proceedings of the twenty-

fifth ACM SIGMOD-SIGACT-SIGART symposium

on Principles of database systems, pages 338–347.

ACM, 2006.

[5] Peter Buneman, James Cheney, and Stijn Van-

summeren. On the expressiveness of implicit prove-

nance in query and update languages. ACM Trans-

actions on Database Systems (TODS), 33(4):28,

2008.

[6] James Cheney. Flux: functional updates for

xml. In Proceedings of the 13th ACM SIGPLAN in-

ternational conference on Functional programming,

ICFP ’08, pages 3–14, New York, NY, USA, 2008.

ACM.

[7] Krzysztof Czarnecki, J Nathan Foster, Zhen-

jiang Hu, Ralf Lämmel, Andy Schürr, and James F

Terwilliger. Bidirectional transformations: A cross-

discipline perspective. In Theory and Practice of

Model Transformations, pages 260–283. Springer,

2009.

[8] Sebastian Fischer, Zhengjiang Hu, and Hugo

Pacheco. “Putback” is the Essence of Bidirectional

Programming. Technical Report GRACE-TR 2012-

08, GRACE Center, National Institute of Informat-

ics, December 2012.

[9] J Nathan Foster, Michael B Greenwald,

Jonathan T Moore, Benjamin C Pierce, and Alan

Schmitt. Combinators for bidirectional tree trans-

formations: A linguistic approach to the view-

update problem. ACM Transactions on Program-

ming Languages and Systems (TOPLAS), 29(3):17,

2007.

[10] Zhenjiang Hu, Shin-Cheng Mu, and Masato

Takeichi. A programmable editor for developing

structured documents based on bidirectional trans-

formations. Higher-Order and Symbolic Computa-

tion, 21(1-2):89–118, 2008.

[11] Zhenjiang Hu, Andy Schurr, Perdita Stevens,

and James F Terwilliger. Dagstuhl seminar on

bidirectional transformations (bx). ACM SIGMOD

Record, 40(1):35–39, 2011.

[12] Shinya Kawanaka and Haruo Hosoya. bixid: a

bidirectional transformation language for xml. In

Proceedings of the eleventh ACM SIGPLAN in-

ternational conference on Functional programming,

ICFP ’06, pages 201–214, New York, NY, USA,

2006. ACM.

[13] Kenny Zhuo Ming Lu and Martin Sulzmann. An

implementation of subtyping among regular expres-

sion types. In Programming Languages and Sys-

tems, pages 57–73. Springer, 2004.

[14] Hugo Pacheco and Alcino Cunha. Generic point-

free lenses. In Mathematics of Program Construc-

tion, pages 331–352. Springer, 2010.

[15] Hugo Pacheco, Alcino Cunha, and Zhenjiang

Hu. Delta lenses over inductive types. Electronic

Communications of the European Association of

Software Science and Technology, 49, 2012.

[16] Hugo Pacheco, Zhenjiang Hu, and Sebastian Fis-

cher. Combinators for “putback” style bidirectional

programming. Technical report, GRACE Center,

National Institute of Informatics, July 2013.

